Spaces:
Sleeping
Sleeping
replace project
Browse files- Dockerfile +60 -18
- Dockerfile:Zone.Identifier +0 -0
- app.py +273 -108
- code_analysis.py +31 -0
- code_analysis.py:Zone.Identifier +0 -0
- prompts.py +59 -0
- prompts.py:Zone.Identifier +0 -0
- requirements.txt +106 -0
- requirements.txt:Zone.Identifier +0 -0
- states.py +7 -0
- states.py:Zone.Identifier +0 -0
- tools.py +51 -0
- tools.py:Zone.Identifier +0 -0
Dockerfile
CHANGED
@@ -1,31 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
-
#
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
RUN useradd -m -u 1000 user
|
8 |
-
USER user
|
9 |
|
10 |
-
# Set
|
11 |
ENV HOME=/home/user \
|
12 |
-
PATH=/home/user/.local/bin:$PATH
|
13 |
|
14 |
-
|
|
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
COPY --chown=user . $HOME/app
|
22 |
|
23 |
-
# Install the dependencies
|
24 |
-
# RUN uv sync --frozen
|
25 |
-
RUN uv sync
|
26 |
|
27 |
-
# Expose
|
28 |
EXPOSE 7860
|
29 |
|
30 |
-
#
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FROM python:3.10
|
2 |
+
# RUN useradd -m -u 1000 user
|
3 |
+
# USER root
|
4 |
+
# ENV HOME=/home/user \
|
5 |
+
# PATH=/home/user/.local/bin:$PATH
|
6 |
+
# WORKDIR $HOME/app
|
7 |
+
# COPY --chown=user:user . $HOME/app
|
8 |
+
# # COPY --chown=user . $HOME/app
|
9 |
+
# COPY requirements.txt .
|
10 |
+
# # COPY ./requirements.txt ~/app/requirements.txt
|
11 |
|
12 |
+
# RUN pip install --upgrade pip
|
13 |
+
# RUN pip install --no-cache-dir -r requirements.txt
|
14 |
+
# # RUN pip install -r requirements.
|
15 |
+
# # Expose port
|
16 |
+
# EXPOSE 7860
|
17 |
+
# # RUN pip install pydantic==2.10.1 chainlit
|
18 |
+
# # COPY . .
|
19 |
|
20 |
+
# # Ensure app and .local have proper permissions
|
21 |
+
# # USER root
|
22 |
+
# RUN chmod -R 755 /home/user/app
|
23 |
+
# RUN chmod -R 755 /home/user/.local
|
24 |
+
# RUN mkdir -p /home/user/app/.files && chown -R user:user /home/user/app/.files
|
25 |
+
|
26 |
+
|
27 |
+
# USER user
|
28 |
+
|
29 |
+
# CMD ["chainlit", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
30 |
+
|
31 |
+
# # CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
32 |
+
|
33 |
+
|
34 |
+
FROM python:3.10
|
35 |
+
|
36 |
+
# Create user with specific UID
|
37 |
RUN useradd -m -u 1000 user
|
|
|
38 |
|
39 |
+
# Set environment variables
|
40 |
ENV HOME=/home/user \
|
41 |
+
PATH=/home/user/.local/bin:$PATH
|
42 |
|
43 |
+
# Set working directory
|
44 |
+
WORKDIR $HOME/app
|
45 |
|
46 |
+
# Copy requirements and install dependencies as root
|
47 |
+
COPY requirements.txt .
|
48 |
+
RUN pip install --upgrade pip && \
|
49 |
+
pip install --no-cache-dir -r requirements.txt
|
50 |
|
51 |
+
# Copy application files
|
52 |
+
COPY . .
|
53 |
+
|
54 |
+
# Create necessary directories and set permissions
|
55 |
+
RUN mkdir -p /home/user/app/.files && \
|
56 |
+
mkdir -p /home/user/.local && \
|
57 |
+
chown -R user:user /home/user
|
58 |
+
|
59 |
+
RUN pip install pydantic==2.10.1 chainlit
|
60 |
|
61 |
+
COPY chainlit.md .
|
|
|
62 |
|
|
|
|
|
|
|
63 |
|
64 |
+
# Expose port
|
65 |
EXPOSE 7860
|
66 |
|
67 |
+
# Switch to non-root user
|
68 |
+
USER user
|
69 |
+
|
70 |
+
# Run the application
|
71 |
+
CMD ["chainlit", "run", "app.py", "--host", "0.0.0.0", "--port", "7860", "--no-cache"]
|
72 |
+
|
73 |
+
# CMD ["chainlit", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
Dockerfile:Zone.Identifier
ADDED
File without changes
|
app.py
CHANGED
@@ -1,139 +1,304 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
from
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
SystemRolePrompt,
|
8 |
-
AssistantRolePrompt,
|
9 |
-
)
|
10 |
-
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
11 |
-
from aimakerspace.vectordatabase import VectorDatabase
|
12 |
-
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
13 |
-
import chainlit as cl
|
14 |
|
15 |
-
system_template = """\
|
16 |
-
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
|
17 |
-
system_role_prompt = SystemRolePrompt(system_template)
|
18 |
|
19 |
-
user_prompt_template = """\
|
20 |
-
Context:
|
21 |
-
{context}
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
self.vector_db_retriever = vector_db_retriever
|
32 |
|
33 |
-
async def arun_pipeline(self, user_query: str):
|
34 |
-
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
|
35 |
|
36 |
-
context_prompt = ""
|
37 |
-
for context in context_list:
|
38 |
-
context_prompt += context[0] + "\n"
|
39 |
|
40 |
-
formatted_system_prompt = system_role_prompt.create_message()
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
|
46 |
-
yield chunk
|
47 |
|
48 |
-
return {"response": generate_response(), "context": context_list}
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
print(f"Processing file: {file.name}")
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
if
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
83 |
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
accept=["text/plain", "application/pdf"],
|
94 |
-
max_size_mb=2,
|
95 |
-
timeout=180,
|
96 |
-
).send()
|
97 |
|
98 |
-
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
content=f"Processing `{file.name}`..."
|
102 |
-
)
|
103 |
-
await msg.send()
|
104 |
|
105 |
-
# load the file
|
106 |
-
texts = process_file(file)
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
vector_db = await vector_db.abuild_from_list(texts)
|
113 |
-
|
114 |
-
chat_openai = ChatOpenAI()
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
await msg.update()
|
125 |
|
126 |
-
|
|
|
127 |
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
msg = cl.Message(content="")
|
134 |
-
result = await chain.arun_pipeline(message.content)
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
await msg.send()
|
|
|
1 |
import os
|
2 |
+
import getpass
|
3 |
+
from operator import itemgetter
|
4 |
+
from typing import List, Dict
|
5 |
+
import json
|
6 |
+
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
+
#LangChain, LangGraph
|
11 |
+
from langchain_openai import ChatOpenAI
|
12 |
+
from langgraph.graph import START, StateGraph, END
|
13 |
+
from typing_extensions import List, TypedDict
|
14 |
+
from langchain_core.documents import Document
|
15 |
+
from langchain_core.prompts import ChatPromptTemplate
|
16 |
+
from langchain.schema.output_parser import StrOutputParser
|
17 |
+
from langchain_core.tools import Tool, tool
|
18 |
+
from langgraph.prebuilt import ToolNode
|
19 |
+
from typing import TypedDict, Annotated
|
20 |
+
from langgraph.graph.message import add_messages
|
21 |
+
import operator
|
22 |
+
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
|
23 |
+
from langchain.vectorstores import Qdrant
|
24 |
+
from langchain.embeddings import OpenAIEmbeddings
|
25 |
+
from langchain.schema import Document
|
26 |
+
from qdrant_client import QdrantClient
|
27 |
+
from qdrant_client.http.models import Distance, VectorParams
|
28 |
|
29 |
+
import chainlit as cl
|
30 |
+
import tempfile
|
31 |
+
import shutil
|
|
|
32 |
|
|
|
|
|
33 |
|
|
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
+
#helper imports
|
37 |
+
from code_analysis import *
|
38 |
+
from tools import search_pypi, write_to_docx
|
39 |
+
from prompts import describe_imports, main_prompt, documenter_prompt
|
40 |
+
from states import AgentState
|
41 |
|
42 |
+
os.environ["CHAINLIT_DISABLE_WEBSOCKETS"] = "true"
|
|
|
|
|
43 |
|
|
|
44 |
|
45 |
+
# Global variables to store processed data
|
46 |
+
processed_file_path = None
|
47 |
+
document_file_path = None
|
48 |
+
vectorstore = None
|
49 |
+
main_chain = None
|
50 |
+
qdrant_client = None
|
51 |
|
52 |
+
@cl.on_chat_start
|
53 |
+
async def on_chat_start():
|
54 |
+
await cl.Message(content="Welcome to the Python Code Documentation Assistant! Please upload a Python file to get started.").send()
|
55 |
|
56 |
+
@cl.on_message
|
57 |
+
async def on_message(message: cl.Message):
|
58 |
+
global processed_file_path, document_file_path, vectorstore, main_chain, qdrant_client
|
|
|
|
|
59 |
|
60 |
+
if message.elements and any(el.type == "file" for el in message.elements):
|
61 |
+
file_elements = [el for el in message.elements if el.type == "file"]
|
62 |
+
file_element = file_elements[0]
|
63 |
+
is_python_file = (
|
64 |
+
file_element.mime.startswith("text/x-python") or
|
65 |
+
file_element.name.endswith(".py") or
|
66 |
+
file_element.mime == "text/plain" # Some systems identify .py as text/plain
|
67 |
+
)
|
68 |
+
if is_python_file:
|
69 |
+
# Send processing message
|
70 |
+
msg = cl.Message(content="Processing your Python file...")
|
71 |
+
await msg.send()
|
72 |
+
|
73 |
+
print(f'file element \n {file_element} \n')
|
74 |
+
|
75 |
+
# Save uploaded file to a temporary location
|
76 |
+
temp_dir = tempfile.mkdtemp()
|
77 |
+
file_path = os.path.join(temp_dir, file_element.name)
|
78 |
+
|
79 |
+
with open(file_element.path, "rb") as source_file:
|
80 |
+
file_content_bytes = source_file.read()
|
81 |
+
with open(file_path, "wb") as destination_file:
|
82 |
+
destination_file.write(file_content_bytes)
|
83 |
+
|
84 |
+
processed_file_path = file_path
|
85 |
+
|
86 |
try:
|
87 |
+
|
88 |
+
# read file and extract imports
|
89 |
+
file_content = read_python_file(file_path)
|
90 |
+
imports = extract_imports(file_content, file_path)
|
91 |
|
92 |
+
print(f'Done reading file')
|
93 |
|
94 |
+
# Define describe packages graph
|
95 |
+
search_packages_tools = [search_pypi]
|
96 |
+
describe_imports_llm = ChatOpenAI(model="gpt-4o-mini")
|
97 |
+
# describe_imports_llm = describe_imports_llm.bind_tools(tools = search_packages_tools, tool_choice="required")
|
98 |
|
99 |
+
describe_imports_prompt = ChatPromptTemplate.from_messages([
|
100 |
+
("system", describe_imports),
|
101 |
+
("human", "{imports}")
|
102 |
+
])
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
describe_imports_chain = (
|
105 |
+
{"code_language": itemgetter("code_language"), "imports": itemgetter("imports")}
|
106 |
+
| describe_imports_prompt | describe_imports_llm | StrOutputParser()
|
107 |
+
)
|
108 |
|
109 |
+
print(f'done defining imports chain')
|
|
|
|
|
|
|
110 |
|
|
|
|
|
111 |
|
112 |
+
# Define imports chain function
|
113 |
+
def call_imports_chain(state):
|
114 |
+
last_message= state["messages"][-1]
|
115 |
+
content = json.loads(last_message.content)
|
116 |
+
chain_input = {"code_language": content['code_language'],
|
117 |
+
"imports": content['imports']}
|
118 |
+
response = describe_imports_chain.invoke(chain_input)
|
119 |
+
return {"messages": [AIMessage(content=response)]}
|
120 |
|
121 |
+
# bind model to tool or ToolNode
|
122 |
+
imports_tool_node = ToolNode(search_packages_tools)
|
|
|
|
|
|
|
123 |
|
124 |
+
# construct graph and compile
|
125 |
+
uncompiled_imports_graph = StateGraph(AgentState)
|
126 |
+
uncompiled_imports_graph.add_node("imports_agent", call_imports_chain)
|
127 |
+
uncompiled_imports_graph.add_node("imports_action", imports_tool_node)
|
128 |
+
uncompiled_imports_graph.set_entry_point("imports_agent")
|
129 |
+
|
130 |
+
def should_continue(state):
|
131 |
+
last_message = state["messages"][-1]
|
|
|
132 |
|
133 |
+
if last_message.tool_calls:
|
134 |
+
return "imports_action"
|
135 |
|
136 |
+
return END
|
137 |
|
138 |
+
uncompiled_imports_graph.add_conditional_edges(
|
139 |
+
"imports_agent",
|
140 |
+
should_continue
|
141 |
+
)
|
142 |
+
|
143 |
+
uncompiled_imports_graph.add_edge("imports_action", "imports_agent")
|
144 |
+
|
145 |
+
compiled_imports_graph = uncompiled_imports_graph.compile()
|
146 |
+
|
147 |
+
print(f'compiled imports graph')
|
148 |
+
# Invoke imports graph
|
149 |
+
initial_state = {
|
150 |
+
"messages": [{
|
151 |
+
"role": "human",
|
152 |
+
"content": json.dumps({
|
153 |
+
"code_language": "python",
|
154 |
+
"imports": imports
|
155 |
+
})
|
156 |
+
}]
|
157 |
+
}
|
158 |
+
|
159 |
+
# await msg.update(content="Analyzing imports and generating documentation...")
|
160 |
+
msg.content = "Analyzing your code and generating documentation..."
|
161 |
+
await msg.update()
|
162 |
+
|
163 |
+
msg = cl.Message(content="Analyzing your code and generating documentation...")
|
164 |
+
await msg.send()
|
165 |
+
|
166 |
+
result = compiled_imports_graph.invoke(initial_state)
|
167 |
+
|
168 |
+
# Define qdrant Database
|
169 |
+
qdrant_client = QdrantClient(":memory:")
|
170 |
+
|
171 |
+
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
|
172 |
+
embedding_dim = 1536
|
173 |
+
|
174 |
+
qdrant_client.create_collection(
|
175 |
+
collection_name="description_rag_data",
|
176 |
+
vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE),
|
177 |
+
)
|
178 |
+
|
179 |
+
vectorstore = Qdrant(qdrant_client, collection_name="description_rag_data", embeddings=embedding_model)
|
180 |
+
|
181 |
+
# Add packages chunks
|
182 |
+
text = result['messages'][-1].content
|
183 |
+
chunks = [
|
184 |
+
{"type": "Imported Packages", "name": "Imported Packages", "content": text},
|
185 |
+
#{"type": "Source Code", "name": "Source Code", "content": file_content},
|
186 |
+
|
187 |
+
]
|
188 |
+
|
189 |
+
docs = [
|
190 |
+
Document(
|
191 |
+
page_content=f"{chunk['type']} - {chunk['name']} - {chunk['content']}", # Content for the model
|
192 |
+
metadata={**chunk} # Store metadata, but don't put embeddings here
|
193 |
+
)
|
194 |
+
for chunk in chunks
|
195 |
+
]
|
196 |
+
vectorstore.add_documents(docs)
|
197 |
+
qdrant_retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
198 |
+
|
199 |
+
print('done adding docs to DB')
|
200 |
+
#define documenter chain
|
201 |
+
documenter_llm = ChatOpenAI(model="gpt-4o-mini")
|
202 |
+
documenter_llm_prompt = ChatPromptTemplate.from_messages([
|
203 |
+
("system", documenter_prompt),
|
204 |
+
])
|
205 |
+
documenter_chain = (
|
206 |
+
{"context": itemgetter("context")}
|
207 |
+
| documenter_llm_prompt
|
208 |
+
| documenter_llm
|
209 |
+
| StrOutputParser()
|
210 |
+
)
|
211 |
+
|
212 |
+
print('done defining documenter chain')
|
213 |
+
#extract description chunks from database
|
214 |
+
collection_name = "description_rag_data"
|
215 |
+
all_points = qdrant_client.scroll(collection_name=collection_name, limit=1000)[0] # Adjust limit if needed
|
216 |
+
one_chunk = all_points[0].payload
|
217 |
+
input_text = f"type: {one_chunk['metadata']['type']} \nname: {one_chunk['metadata']['name']} \ncontent: {one_chunk['metadata']['content']}"
|
218 |
+
|
219 |
+
print('done extracting chunks form DB')
|
220 |
+
|
221 |
+
document_response = documenter_chain.invoke({"context": input_text})
|
222 |
+
|
223 |
+
print('done invoking documenter chain and will write in docx')
|
224 |
+
# write packages description in word file
|
225 |
+
document_file_path = write_to_docx(document_response)
|
226 |
+
|
227 |
+
print('done writing docx file')
|
228 |
+
# Set up Main Chain for chat
|
229 |
+
main_llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
|
230 |
+
|
231 |
+
|
232 |
+
main_llm_prompt = ChatPromptTemplate.from_messages([
|
233 |
+
("system", main_prompt),
|
234 |
+
("human", "{query}")
|
235 |
+
])
|
236 |
+
|
237 |
+
main_chain = (
|
238 |
+
{"context": itemgetter("query") | qdrant_retriever, "code_language": itemgetter("code_language"), "query": itemgetter("query"), }
|
239 |
+
| main_llm_prompt
|
240 |
+
| main_llm
|
241 |
+
| StrOutputParser()
|
242 |
+
)
|
243 |
+
|
244 |
+
print('done defining main chain')
|
245 |
+
# Present download button for the document
|
246 |
+
elements = [
|
247 |
+
cl.File(
|
248 |
+
name="documentation.docx",
|
249 |
+
path=document_file_path,
|
250 |
+
display="inline"
|
251 |
+
)
|
252 |
+
]
|
253 |
+
print('done defining elements')
|
254 |
+
msg.content = "✅ Your Python file has been processed! You can download the documentation file below. How can I help you with your code?"
|
255 |
+
msg.elements = elements
|
256 |
+
await msg.update()
|
257 |
+
|
258 |
+
except Exception as e:
|
259 |
+
msg.content = f"❌ Error processing file: {str(e)}"
|
260 |
+
await msg.update()
|
261 |
+
|
262 |
+
|
263 |
+
else:
|
264 |
+
await cl.Message(content="Please upload a Python (.py) file.").send()
|
265 |
+
|
266 |
+
# Handle chat messages if file has been processed
|
267 |
+
elif processed_file_path and main_chain:
|
268 |
+
user_input = message.content
|
269 |
+
# Send thinking message
|
270 |
+
msg = cl.Message(content="Thinking...")
|
271 |
+
await msg.send()
|
272 |
+
|
273 |
+
try:
|
274 |
+
# Use main_chain to answer the query
|
275 |
+
# invoke main chain
|
276 |
+
inputs = {
|
277 |
+
'code_language': 'Python',
|
278 |
+
'query': user_input
|
279 |
+
}
|
280 |
+
|
281 |
+
response = main_chain.invoke(inputs)
|
282 |
+
|
283 |
+
# Update with the response
|
284 |
+
msg.content = response
|
285 |
+
await msg.update()
|
286 |
+
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
msg.content = f"❌ Error processing your question: {str(e)}"
|
290 |
+
await msg.update()
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
else:
|
295 |
+
await cl.Message(content="Please upload a Python file first before asking questions.").send()
|
296 |
|
|
|
|
|
297 |
|
298 |
+
@cl.on_stop
|
299 |
+
def on_stop():
|
300 |
+
global processed_file_path
|
301 |
+
# Clean up temporary files
|
302 |
+
if processed_file_path and os.path.exists(os.path.dirname(processed_file_path)):
|
303 |
+
shutil.rmtree(os.path.dirname(processed_file_path))
|
304 |
|
|
code_analysis.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
def read_python_file(file_path):
|
3 |
+
try:
|
4 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
5 |
+
content = f.read()
|
6 |
+
return content
|
7 |
+
except FileNotFoundError:
|
8 |
+
print(f"File not found: {file_path}")
|
9 |
+
raise
|
10 |
+
except IOError as e:
|
11 |
+
print(f"Error reading file {file_path}: {str(e)}")
|
12 |
+
raise
|
13 |
+
except Exception as e:
|
14 |
+
print(f"Unexpected error reading file {file_path}: {str(e)}")
|
15 |
+
raise
|
16 |
+
|
17 |
+
def extract_imports(code, file_path):
|
18 |
+
try:
|
19 |
+
|
20 |
+
# Split into lines and find imports
|
21 |
+
import_lines = []
|
22 |
+
for line in code.split('\n'):
|
23 |
+
line = line.strip()
|
24 |
+
if line.startswith('import ') or line.startswith('from '):
|
25 |
+
import_lines.append(line)
|
26 |
+
|
27 |
+
return import_lines
|
28 |
+
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error extracting imports from file {file_path}: {str(e)}")
|
31 |
+
return []
|
code_analysis.py:Zone.Identifier
ADDED
File without changes
|
prompts.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
describe_imports = """You are an expert {code_language} developer.
|
2 |
+
Your will be given code lines that import packages.
|
3 |
+
Your role is to give a brief description of each package
|
4 |
+
|
5 |
+
You have access to the following tool and you MUST use it:
|
6 |
+
search_pypi: Use this to get information about Python packages from PyPI.
|
7 |
+
|
8 |
+
For each import:
|
9 |
+
1. Extract the main package name
|
10 |
+
2. Use the search_pypi tool to get package information by calling "search_pypi(package_name)"
|
11 |
+
3. Combine the information into a clear description
|
12 |
+
4. If the retuned value of tool is empty use your own knowledge
|
13 |
+
5. If you have no knowledge for this package then it's description should be "I don't know details about this package"
|
14 |
+
|
15 |
+
You must respond in the following JSON format:
|
16 |
+
{{"Imported_Packages": [
|
17 |
+
{{"name": "package1", "desc": "brief description of package1"}},
|
18 |
+
{{"name": "package2", "desc": "brief description of package2"}}
|
19 |
+
]}}
|
20 |
+
|
21 |
+
Rules for the output:
|
22 |
+
1. Use valid JSON format
|
23 |
+
2. Package names should be the exact names from the imports
|
24 |
+
3. Descriptions should be brief and clear
|
25 |
+
4. Do not include any text outside the JSON structure
|
26 |
+
"""
|
27 |
+
|
28 |
+
documenter_prompt = """You are an expert code documenter.
|
29 |
+
Your role is to write a well structured document that describes code functionality.
|
30 |
+
|
31 |
+
From the given context:
|
32 |
+
1- type: is the type of the code block (funciton, class, ..)
|
33 |
+
2- name: is the name of the code block
|
34 |
+
3- content: is the description of the code block
|
35 |
+
|
36 |
+
Instructions:
|
37 |
+
Write a docx document with the following structure Heading 1(type) -> Heading 2(name) -> content
|
38 |
+
|
39 |
+
Rules for the output:
|
40 |
+
1. Don't write information out of context
|
41 |
+
2. If needed, structure long responses in lists and sections
|
42 |
+
|
43 |
+
<context>
|
44 |
+
{context}
|
45 |
+
</context>
|
46 |
+
"""
|
47 |
+
|
48 |
+
main_prompt = """You are an expert {code_language} developer.
|
49 |
+
Your role is to answer user's questions about code and its description that will be given to you in context.
|
50 |
+
|
51 |
+
Rules for the output:
|
52 |
+
1. Don't answer out of context questions.
|
53 |
+
2. Provide a single, clear response using only the given context.
|
54 |
+
3. If needed, structure long responses in lists and sections.
|
55 |
+
|
56 |
+
<context>
|
57 |
+
{context}
|
58 |
+
</context>
|
59 |
+
"""
|
prompts.py:Zone.Identifier
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
aiohappyeyeballs==2.4.6
|
3 |
+
aiohttp==3.11.12
|
4 |
+
aiosignal==1.3.2
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.8.0
|
7 |
+
async-timeout==4.0.3
|
8 |
+
asyncer==0.0.7
|
9 |
+
attrs==25.1.0
|
10 |
+
bidict==0.23.1
|
11 |
+
Brotli==1.1.0
|
12 |
+
certifi==2025.1.31
|
13 |
+
chainlit==2.2.1
|
14 |
+
charset-normalizer==3.4.1
|
15 |
+
chevron==0.14.0
|
16 |
+
click==8.1.8
|
17 |
+
dataclasses-json==0.6.7
|
18 |
+
Deprecated==1.2.18
|
19 |
+
distro==1.9.0
|
20 |
+
docx==0.2.4
|
21 |
+
fastapi==0.115.8
|
22 |
+
filetype==1.2.0
|
23 |
+
frozenlist==1.5.0
|
24 |
+
googleapis-common-protos==1.68.0
|
25 |
+
greenlet==3.1.1
|
26 |
+
grpcio==1.70.0
|
27 |
+
grpcio-tools==1.70.0
|
28 |
+
h11==0.14.0
|
29 |
+
h2==4.2.0
|
30 |
+
hpack==4.1.0
|
31 |
+
httpcore==1.0.7
|
32 |
+
httpx==0.28.1
|
33 |
+
httpx-sse==0.4.0
|
34 |
+
hyperframe==6.1.0
|
35 |
+
idna==3.10
|
36 |
+
importlib_metadata==8.5.0
|
37 |
+
jiter==0.8.2
|
38 |
+
jsonpatch==1.33
|
39 |
+
jsonpointer==3.0.0
|
40 |
+
langchain==0.3.15
|
41 |
+
langchain-community==0.3.15
|
42 |
+
langchain-core==0.3.31
|
43 |
+
langchain-openai==0.3.1
|
44 |
+
langchain-qdrant==0.2.0
|
45 |
+
langchain-text-splitters==0.3.5
|
46 |
+
langgraph==0.2.74
|
47 |
+
langgraph-checkpoint==2.0.16
|
48 |
+
langgraph-sdk==0.1.51
|
49 |
+
langsmith==0.3.8
|
50 |
+
Lazify==0.4.0
|
51 |
+
literalai==0.1.103
|
52 |
+
lxml==5.3.1
|
53 |
+
marshmallow==3.26.1
|
54 |
+
msgpack==1.1.0
|
55 |
+
multidict==6.1.0
|
56 |
+
mypy-extensions==1.0.0
|
57 |
+
numpy==1.26.4
|
58 |
+
openai==1.63.2
|
59 |
+
opentelemetry-api==1.29.0
|
60 |
+
opentelemetry-exporter-otlp==1.29.0
|
61 |
+
opentelemetry-exporter-otlp-proto-common==1.29.0
|
62 |
+
opentelemetry-exporter-otlp-proto-grpc==1.29.0
|
63 |
+
opentelemetry-exporter-otlp-proto-http==1.29.0
|
64 |
+
opentelemetry-instrumentation==0.50b0
|
65 |
+
opentelemetry-proto==1.29.0
|
66 |
+
opentelemetry-sdk==1.29.0
|
67 |
+
opentelemetry-semantic-conventions==0.50b0
|
68 |
+
orjson==3.10.15
|
69 |
+
pillow==11.1.0
|
70 |
+
portalocker==2.10.1
|
71 |
+
propcache==0.2.1
|
72 |
+
protobuf==5.29.3
|
73 |
+
pydantic==2.10.6
|
74 |
+
pydantic-settings==2.7.1
|
75 |
+
pydantic_core==2.27.2
|
76 |
+
PyJWT==2.10.1
|
77 |
+
python-docx==1.1.2
|
78 |
+
python-dotenv==1.0.1
|
79 |
+
python-engineio==4.11.2
|
80 |
+
python-multipart==0.0.18
|
81 |
+
python-socketio==5.12.1
|
82 |
+
PyYAML==6.0.2
|
83 |
+
qdrant-client==1.13.2
|
84 |
+
regex==2024.11.6
|
85 |
+
requests==2.32.3
|
86 |
+
requests-toolbelt==1.0.0
|
87 |
+
simple-websocket==1.1.0
|
88 |
+
sniffio==1.3.1
|
89 |
+
socksio==1.0.0
|
90 |
+
SQLAlchemy==2.0.38
|
91 |
+
starlette==0.41.3
|
92 |
+
syncer==2.0.3
|
93 |
+
tenacity==9.0.0
|
94 |
+
tiktoken==0.9.0
|
95 |
+
tomli==2.2.1
|
96 |
+
tqdm==4.67.1
|
97 |
+
typing-inspect==0.9.0
|
98 |
+
uptrace==1.29.0
|
99 |
+
urllib3==2.3.0
|
100 |
+
uvicorn==0.34.0
|
101 |
+
watchfiles==0.20.0
|
102 |
+
wrapt==1.17.2
|
103 |
+
wsproto==1.2.0
|
104 |
+
yarl==1.18.3
|
105 |
+
zipp==3.21.0
|
106 |
+
zstandard==0.23.0
|
requirements.txt:Zone.Identifier
ADDED
File without changes
|
states.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing_extensions import List, TypedDict
|
2 |
+
from typing import TypedDict, Annotated
|
3 |
+
from langgraph.graph.message import add_messages
|
4 |
+
|
5 |
+
|
6 |
+
class AgentState(TypedDict):
|
7 |
+
messages: Annotated[list, add_messages]
|
states.py:Zone.Identifier
ADDED
File without changes
|
tools.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.tools import Tool, tool
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
from docx import Document
|
5 |
+
import re
|
6 |
+
|
7 |
+
|
8 |
+
@tool
|
9 |
+
def search_pypi(package_name: str) -> str:
|
10 |
+
"""Search PyPI for Python package information. Input should be the package name.
|
11 |
+
Args:
|
12 |
+
package_name: name of the package
|
13 |
+
"""
|
14 |
+
print(f"Tool called for package: {package_name}")
|
15 |
+
base_url = "https://pypi.org/pypi"
|
16 |
+
try:
|
17 |
+
try:
|
18 |
+
response = requests.get(f"{base_url}/{package_name}/json")
|
19 |
+
response.raise_for_status()
|
20 |
+
info = response.json()
|
21 |
+
except requests.RequestException as e:
|
22 |
+
raise Exception(f"Error fetching PyPI info for {package_name}: {str(e)}")
|
23 |
+
result = json.dumps({
|
24 |
+
"name": info["info"]["name"],
|
25 |
+
"summary": info["info"]["summary"],
|
26 |
+
})
|
27 |
+
print(f"Tool result: {result}")
|
28 |
+
return result
|
29 |
+
except Exception as e:
|
30 |
+
return f"Could not find package information: {str(e)}"
|
31 |
+
|
32 |
+
# @tool
|
33 |
+
def write_to_docx(documentation_text: str) -> str:
|
34 |
+
"""
|
35 |
+
Writes the AI-generated documentation to a .docx file and returns the file path.
|
36 |
+
"""
|
37 |
+
doc = Document()
|
38 |
+
# doc.add_heading("Code Documentation", level=1)
|
39 |
+
|
40 |
+
lines = documentation_text.split("\n")
|
41 |
+
for line in lines:
|
42 |
+
if line.startswith("# "): # Section Heading
|
43 |
+
doc.add_heading(line[2:], level=1)
|
44 |
+
elif line.startswith("## "): # Subsection Heading
|
45 |
+
doc.add_heading(line[3:], level=2)
|
46 |
+
else: # Normal paragraph
|
47 |
+
doc.add_paragraph(line)
|
48 |
+
|
49 |
+
file_path = "generated_documentation.docx"
|
50 |
+
doc.save(file_path)
|
51 |
+
return file_path
|
tools.py:Zone.Identifier
ADDED
File without changes
|