Spaces:
Runtime error
Runtime error
Mehdi Cherti
commited on
Commit
·
eb17c34
1
Parent(s):
9916e2b
update
Browse files- app.py +1 -2
- clip_encoder.py +3 -11
- test_ddgan.py +0 -1
- test_ddgan_old.py +685 -0
app.py
CHANGED
|
@@ -80,5 +80,4 @@ iface = gr.Interface(
|
|
| 80 |
],
|
| 81 |
outputs="image"
|
| 82 |
)
|
| 83 |
-
|
| 84 |
-
iface.queue(concurrency_count=8, max_size=100).launch(max_threads=8, debug=True)
|
|
|
|
| 80 |
],
|
| 81 |
outputs="image"
|
| 82 |
)
|
| 83 |
+
iface.launch(debug=True)
|
|
|
clip_encoder.py
CHANGED
|
@@ -17,23 +17,15 @@ class CLIPEncoder(nn.Module):
|
|
| 17 |
if os.path.exists(fname):
|
| 18 |
print(fname)
|
| 19 |
pretrained = fname
|
| 20 |
-
#model = "ViT-B-32"
|
| 21 |
-
#pretrained = "openai"
|
| 22 |
-
|
| 23 |
self.model = model
|
| 24 |
-
|
| 25 |
self.pretrained = pretrained
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
self.output_size = 1024
|
| 29 |
-
#self.output_size = self.model.transformer.width
|
| 30 |
|
| 31 |
def forward(self, texts, return_only_pooled=False):
|
| 32 |
-
return torch.randn(len(texts), self.output_size), torch.randn(len(texts), 77, self.output_size), torch.ones(len(texts), 77).bool()
|
| 33 |
-
|
| 34 |
device = next(self.parameters()).device
|
| 35 |
toks = open_clip.tokenize(texts).to(device)
|
| 36 |
-
x = self.model.token_embedding(toks)
|
| 37 |
x = x + self.model.positional_embedding
|
| 38 |
x = x.permute(1, 0, 2) # NLD -> LND
|
| 39 |
x = self.model.transformer(x, attn_mask=self.model.attn_mask)
|
|
|
|
| 17 |
if os.path.exists(fname):
|
| 18 |
print(fname)
|
| 19 |
pretrained = fname
|
|
|
|
|
|
|
|
|
|
| 20 |
self.model = model
|
|
|
|
| 21 |
self.pretrained = pretrained
|
| 22 |
+
self.model, _, _ = open_clip.create_model_and_transforms(model, pretrained=pretrained)
|
| 23 |
+
self.output_size = self.model.transformer.width
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def forward(self, texts, return_only_pooled=False):
|
|
|
|
|
|
|
| 26 |
device = next(self.parameters()).device
|
| 27 |
toks = open_clip.tokenize(texts).to(device)
|
| 28 |
+
x = self.model.token_embedding(toks)
|
| 29 |
x = x + self.model.positional_embedding
|
| 30 |
x = x.permute(1, 0, 2) # NLD -> LND
|
| 31 |
x = self.model.transformer(x, attn_mask=self.model.attn_mask)
|
test_ddgan.py
CHANGED
|
@@ -394,7 +394,6 @@ def load_model(config, path, device="cpu"):
|
|
| 394 |
print(text_encoder)
|
| 395 |
config.cond_size = text_encoder.output_size
|
| 396 |
netG = NCSNpp(config)
|
| 397 |
-
#print(netG)
|
| 398 |
print(path, os.path.exists(path))
|
| 399 |
ckpt = torch.load(path, map_location="cpu")
|
| 400 |
print("CK", ckpt)
|
|
|
|
| 394 |
print(text_encoder)
|
| 395 |
config.cond_size = text_encoder.output_size
|
| 396 |
netG = NCSNpp(config)
|
|
|
|
| 397 |
print(path, os.path.exists(path))
|
| 398 |
ckpt = torch.load(path, map_location="cpu")
|
| 399 |
print("CK", ckpt)
|
test_ddgan_old.py
ADDED
|
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ---------------------------------------------------------------
|
| 2 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This work is licensed under the NVIDIA Source Code License
|
| 5 |
+
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
|
| 6 |
+
# ---------------------------------------------------------------
|
| 7 |
+
import argparse
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import time
|
| 11 |
+
import os
|
| 12 |
+
import json
|
| 13 |
+
import torchvision
|
| 14 |
+
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
|
| 15 |
+
from encoder import build_encoder
|
| 16 |
+
|
| 17 |
+
#%% Diffusion coefficients
|
| 18 |
+
def var_func_vp(t, beta_min, beta_max):
|
| 19 |
+
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
|
| 20 |
+
var = 1. - torch.exp(2. * log_mean_coeff)
|
| 21 |
+
return var
|
| 22 |
+
|
| 23 |
+
def var_func_geometric(t, beta_min, beta_max):
|
| 24 |
+
return beta_min * ((beta_max / beta_min) ** t)
|
| 25 |
+
|
| 26 |
+
def extract(input, t, shape):
|
| 27 |
+
out = torch.gather(input, 0, t)
|
| 28 |
+
reshape = [shape[0]] + [1] * (len(shape) - 1)
|
| 29 |
+
out = out.reshape(*reshape)
|
| 30 |
+
|
| 31 |
+
return out
|
| 32 |
+
|
| 33 |
+
def get_time_schedule(args, device):
|
| 34 |
+
n_timestep = args.num_timesteps
|
| 35 |
+
eps_small = 1e-3
|
| 36 |
+
t = np.arange(0, n_timestep + 1, dtype=np.float64)
|
| 37 |
+
t = t / n_timestep
|
| 38 |
+
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
|
| 39 |
+
return t.to(device)
|
| 40 |
+
|
| 41 |
+
def get_sigma_schedule(args, device):
|
| 42 |
+
n_timestep = args.num_timesteps
|
| 43 |
+
beta_min = args.beta_min
|
| 44 |
+
beta_max = args.beta_max
|
| 45 |
+
eps_small = 1e-3
|
| 46 |
+
|
| 47 |
+
t = np.arange(0, n_timestep + 1, dtype=np.float64)
|
| 48 |
+
t = t / n_timestep
|
| 49 |
+
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
|
| 50 |
+
|
| 51 |
+
if args.use_geometric:
|
| 52 |
+
var = var_func_geometric(t, beta_min, beta_max)
|
| 53 |
+
else:
|
| 54 |
+
var = var_func_vp(t, beta_min, beta_max)
|
| 55 |
+
alpha_bars = 1.0 - var
|
| 56 |
+
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
|
| 57 |
+
|
| 58 |
+
first = torch.tensor(1e-8)
|
| 59 |
+
betas = torch.cat((first[None], betas)).to(device)
|
| 60 |
+
betas = betas.type(torch.float32)
|
| 61 |
+
sigmas = betas**0.5
|
| 62 |
+
a_s = torch.sqrt(1-betas)
|
| 63 |
+
return sigmas, a_s, betas
|
| 64 |
+
|
| 65 |
+
#%% posterior sampling
|
| 66 |
+
class Posterior_Coefficients():
|
| 67 |
+
def __init__(self, args, device):
|
| 68 |
+
|
| 69 |
+
_, _, self.betas = get_sigma_schedule(args, device=device)
|
| 70 |
+
|
| 71 |
+
#we don't need the zeros
|
| 72 |
+
self.betas = self.betas.type(torch.float32)[1:]
|
| 73 |
+
|
| 74 |
+
self.alphas = 1 - self.betas
|
| 75 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
|
| 76 |
+
self.alphas_cumprod_prev = torch.cat(
|
| 77 |
+
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
|
| 78 |
+
)
|
| 79 |
+
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
|
| 80 |
+
|
| 81 |
+
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
|
| 82 |
+
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
|
| 83 |
+
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
|
| 84 |
+
|
| 85 |
+
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
|
| 86 |
+
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
|
| 87 |
+
|
| 88 |
+
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
|
| 89 |
+
|
| 90 |
+
def predict_q_posterior(coefficients, x_0, x_t, t):
|
| 91 |
+
mean = (
|
| 92 |
+
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
|
| 93 |
+
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 94 |
+
)
|
| 95 |
+
var = extract(coefficients.posterior_variance, t, x_t.shape)
|
| 96 |
+
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
|
| 97 |
+
return mean, var, log_var_clipped
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def sample_posterior(coefficients, x_0,x_t, t):
|
| 102 |
+
|
| 103 |
+
def q_posterior(x_0, x_t, t):
|
| 104 |
+
mean = (
|
| 105 |
+
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
|
| 106 |
+
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 107 |
+
)
|
| 108 |
+
var = extract(coefficients.posterior_variance, t, x_t.shape)
|
| 109 |
+
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
|
| 110 |
+
return mean, var, log_var_clipped
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def p_sample(x_0, x_t, t):
|
| 114 |
+
mean, _, log_var = q_posterior(x_0, x_t, t)
|
| 115 |
+
|
| 116 |
+
noise = torch.randn_like(x_t)
|
| 117 |
+
|
| 118 |
+
nonzero_mask = (1 - (t == 0).type(torch.float32))
|
| 119 |
+
|
| 120 |
+
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
|
| 121 |
+
|
| 122 |
+
sample_x_pos = p_sample(x_0, x_t, t)
|
| 123 |
+
|
| 124 |
+
return sample_x_pos
|
| 125 |
+
|
| 126 |
+
def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None):
|
| 127 |
+
x = x_init
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
for i in reversed(range(n_time)):
|
| 130 |
+
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
| 131 |
+
|
| 132 |
+
t_time = t
|
| 133 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)#.to(x.device)
|
| 134 |
+
x_0 = generator(x, t_time, latent_z, cond=cond)
|
| 135 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
| 136 |
+
x = x_new.detach()
|
| 137 |
+
|
| 138 |
+
return x
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
|
| 142 |
+
x = x_init
|
| 143 |
+
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
| 144 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 145 |
+
with torch.no_grad():
|
| 146 |
+
for i in reversed(range(n_time)):
|
| 147 |
+
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
| 148 |
+
t_time = t
|
| 149 |
+
|
| 150 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 151 |
+
|
| 152 |
+
x_0_uncond = generator(x, t_time, latent_z, cond=null)
|
| 153 |
+
|
| 154 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 155 |
+
|
| 156 |
+
x_0_cond = generator(x, t_time, latent_z, cond=cond)
|
| 157 |
+
|
| 158 |
+
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
| 159 |
+
eps_cond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
| 160 |
+
|
| 161 |
+
# eps = eps_uncond + guidance_scale * (eps_cond - eps_uncond)
|
| 162 |
+
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale
|
| 163 |
+
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps)
|
| 164 |
+
#x_0 = x_0_uncond * (1 - guidance_scale) + x_0_cond * guidance_scale
|
| 165 |
+
|
| 166 |
+
# Dynamic thresholding
|
| 167 |
+
q = opt.dynamic_thresholding_quantile
|
| 168 |
+
#print("Before", x_0.min(), x_0.max())
|
| 169 |
+
if q:
|
| 170 |
+
shape = x_0.shape
|
| 171 |
+
x_0_v = x_0.view(shape[0], -1)
|
| 172 |
+
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True)
|
| 173 |
+
d.clamp_(min=1)
|
| 174 |
+
x_0_v = x_0_v.clamp(-d, d) / d
|
| 175 |
+
x_0 = x_0_v.view(shape)
|
| 176 |
+
#print("After", x_0.min(), x_0.max())
|
| 177 |
+
|
| 178 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
| 179 |
+
|
| 180 |
+
# Dynamic thresholding
|
| 181 |
+
# q = args.dynamic_thresholding_percentile
|
| 182 |
+
# shape = x_new.shape
|
| 183 |
+
# x_new_v = x_new.view(shape[0], -1)
|
| 184 |
+
# d = torch.quantile(torch.abs(x_new_v), q, dim=1, keepdim=True)
|
| 185 |
+
# d = torch.maximum(d, torch.ones_like(d))
|
| 186 |
+
# d.clamp_(min = 1.)
|
| 187 |
+
# x_new_v = torch.clamp(x_new_v, -d, d) / d
|
| 188 |
+
# x_new = x_new_v.view(shape)
|
| 189 |
+
x = x_new.detach()
|
| 190 |
+
|
| 191 |
+
return x
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def sample_from_model_classifier_free_guidance_convolutional(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0, split_input_params=None):
|
| 195 |
+
x = x_init
|
| 196 |
+
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
| 197 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 198 |
+
ks = split_input_params["ks"] # eg. (128, 128)
|
| 199 |
+
stride = split_input_params["stride"] # eg. (64, 64)
|
| 200 |
+
uf = split_input_params["vqf"]
|
| 201 |
+
with torch.no_grad():
|
| 202 |
+
for i in reversed(range(n_time)):
|
| 203 |
+
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
| 204 |
+
t_time = t
|
| 205 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 206 |
+
|
| 207 |
+
fold, unfold, normalization, weighting = get_fold_unfold(x, ks, stride, split_input_params, uf=uf)
|
| 208 |
+
x = unfold(x)
|
| 209 |
+
x = x.view((x.shape[0], -1, ks[0], ks[1], x.shape[-1]))
|
| 210 |
+
x_new_list = []
|
| 211 |
+
for j in range(x.shape[-1]):
|
| 212 |
+
x_0_uncond = generator(x[:,:,:,:,j], t_time, latent_z, cond=null)
|
| 213 |
+
x_0_cond = generator(x[:,:,:,:,j], t_time, latent_z, cond=cond)
|
| 214 |
+
|
| 215 |
+
eps_uncond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
| 216 |
+
eps_cond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
| 217 |
+
|
| 218 |
+
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale
|
| 219 |
+
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x[:,:,:,:,j] - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps)
|
| 220 |
+
q = args.dynamic_thresholding_quantile
|
| 221 |
+
if q:
|
| 222 |
+
shape = x_0.shape
|
| 223 |
+
x_0_v = x_0.view(shape[0], -1)
|
| 224 |
+
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True)
|
| 225 |
+
d.clamp_(min=1)
|
| 226 |
+
x_0_v = x_0_v.clamp(-d, d) / d
|
| 227 |
+
x_0 = x_0_v.view(shape)
|
| 228 |
+
x_new = sample_posterior(coefficients, x_0, x[:,:,:,:,j], t)
|
| 229 |
+
x_new_list.append(x_new)
|
| 230 |
+
|
| 231 |
+
o = torch.stack(x_new_list, axis=-1)
|
| 232 |
+
#o = o * weighting
|
| 233 |
+
o = o.view((o.shape[0], -1, o.shape[-1]))
|
| 234 |
+
decoded = fold(o)
|
| 235 |
+
decoded = decoded / normalization
|
| 236 |
+
x = decoded.detach()
|
| 237 |
+
|
| 238 |
+
return x
|
| 239 |
+
|
| 240 |
+
def sample_from_model_clip_guidance(coefficients, generator, clip_model, n_time, x_init, T, opt, texts, cond=None, guidance_scale=0):
|
| 241 |
+
x = x_init
|
| 242 |
+
text_features = torch.nn.functional.normalize(clip_model.forward_text(texts), dim=1)
|
| 243 |
+
n_time = 16
|
| 244 |
+
for i in reversed(range(n_time)):
|
| 245 |
+
t = torch.full((x.size(0),), i%4, dtype=torch.int64).to(x.device)
|
| 246 |
+
t_time = t
|
| 247 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 248 |
+
x.requires_grad = True
|
| 249 |
+
x_0 = generator(x, t_time, latent_z, cond=cond)
|
| 250 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
| 251 |
+
x_new_n = (x_new + 1) / 2
|
| 252 |
+
image_features = torch.nn.functional.normalize(clip_model.forward_image(x_new_n), dim=1)
|
| 253 |
+
loss = (image_features*text_features).sum(dim=1).mean()
|
| 254 |
+
x_grad, = torch.autograd.grad(loss, x)
|
| 255 |
+
lr = 3000
|
| 256 |
+
x = x.detach()
|
| 257 |
+
print(x.min(),x.max(), lr*x_grad.min(), lr*x_grad.max())
|
| 258 |
+
x += x_grad * lr
|
| 259 |
+
|
| 260 |
+
with torch.no_grad():
|
| 261 |
+
x_0 = generator(x, t_time, latent_z, cond=cond)
|
| 262 |
+
x_new = sample_posterior(coefficients, x_0, x, t)
|
| 263 |
+
|
| 264 |
+
x = x_new.detach()
|
| 265 |
+
print(i)
|
| 266 |
+
return x
|
| 267 |
+
|
| 268 |
+
def meshgrid(h, w):
|
| 269 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
| 270 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
| 271 |
+
|
| 272 |
+
arr = torch.cat([y, x], dim=-1)
|
| 273 |
+
return arr
|
| 274 |
+
def delta_border(h, w):
|
| 275 |
+
"""
|
| 276 |
+
:param h: height
|
| 277 |
+
:param w: width
|
| 278 |
+
:return: normalized distance to image border,
|
| 279 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
| 280 |
+
"""
|
| 281 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
| 282 |
+
arr = meshgrid(h, w) / lower_right_corner
|
| 283 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
| 284 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
| 285 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
| 286 |
+
return edge_dist
|
| 287 |
+
|
| 288 |
+
def get_weighting(h, w, Ly, Lx, device, split_input_params):
|
| 289 |
+
weighting = delta_border(h, w)
|
| 290 |
+
weighting = torch.clip(weighting, split_input_params["clip_min_weight"],
|
| 291 |
+
split_input_params["clip_max_weight"], )
|
| 292 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
| 293 |
+
|
| 294 |
+
if split_input_params["tie_braker"]:
|
| 295 |
+
L_weighting = delta_border(Ly, Lx)
|
| 296 |
+
L_weighting = torch.clip(L_weighting,
|
| 297 |
+
split_input_params["clip_min_tie_weight"],
|
| 298 |
+
split_input_params["clip_max_tie_weight"])
|
| 299 |
+
|
| 300 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
| 301 |
+
weighting = weighting * L_weighting
|
| 302 |
+
return weighting
|
| 303 |
+
|
| 304 |
+
def get_fold_unfold(x, kernel_size, stride, split_input_params, uf=1, df=1): # todo load once not every time, shorten code
|
| 305 |
+
"""
|
| 306 |
+
:param x: img of size (bs, c, h, w)
|
| 307 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
| 308 |
+
"""
|
| 309 |
+
bs, nc, h, w = x.shape
|
| 310 |
+
|
| 311 |
+
# number of crops in image
|
| 312 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
| 313 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
| 314 |
+
|
| 315 |
+
if uf == 1 and df == 1:
|
| 316 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 317 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 318 |
+
|
| 319 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
| 320 |
+
|
| 321 |
+
weighting = get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device, split_input_params).to(x.dtype)
|
| 322 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
| 323 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
| 324 |
+
|
| 325 |
+
elif uf > 1 and df == 1:
|
| 326 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 327 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 328 |
+
|
| 329 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
| 330 |
+
dilation=1, padding=0,
|
| 331 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
| 332 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
| 333 |
+
|
| 334 |
+
weighting = get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device, split_input_params).to(x.dtype)
|
| 335 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
| 336 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
| 337 |
+
|
| 338 |
+
elif df > 1 and uf == 1:
|
| 339 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 340 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 341 |
+
|
| 342 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
| 343 |
+
dilation=1, padding=0,
|
| 344 |
+
stride=(stride[0] // df, stride[1] // df))
|
| 345 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
| 346 |
+
|
| 347 |
+
weighting = get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device, split_input_params).to(x.dtype)
|
| 348 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
| 349 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
| 350 |
+
|
| 351 |
+
else:
|
| 352 |
+
raise NotImplementedError
|
| 353 |
+
|
| 354 |
+
return fold, unfold, normalization, weighting
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
#%%
|
| 359 |
+
def sample_and_test(args):
|
| 360 |
+
torch.manual_seed(args.seed)
|
| 361 |
+
|
| 362 |
+
device = 'cuda:0'
|
| 363 |
+
text_encoder =build_encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
|
| 364 |
+
args.cond_size = text_encoder.output_size
|
| 365 |
+
if args.dataset == 'cifar10':
|
| 366 |
+
real_img_dir = 'pytorch_fid/cifar10_train_stat.npy'
|
| 367 |
+
elif args.dataset == 'celeba_256':
|
| 368 |
+
real_img_dir = 'pytorch_fid/celeba_256_stat.npy'
|
| 369 |
+
elif args.dataset == 'lsun':
|
| 370 |
+
real_img_dir = 'pytorch_fid/lsun_church_stat.npy'
|
| 371 |
+
else:
|
| 372 |
+
real_img_dir = args.real_img_dir
|
| 373 |
+
|
| 374 |
+
to_range_0_1 = lambda x: (x + 1.) / 2.
|
| 375 |
+
|
| 376 |
+
print(vars(args))
|
| 377 |
+
netG = NCSNpp(args).to(device)
|
| 378 |
+
|
| 379 |
+
if args.epoch_id == -1:
|
| 380 |
+
epochs = range(1000)
|
| 381 |
+
else:
|
| 382 |
+
epochs = [args.epoch_id]
|
| 383 |
+
|
| 384 |
+
for epoch in epochs:
|
| 385 |
+
args.epoch_id = epoch
|
| 386 |
+
path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id)
|
| 387 |
+
next_next_path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id+2)
|
| 388 |
+
if not os.path.exists(path):
|
| 389 |
+
continue
|
| 390 |
+
if not os.path.exists(next_next_path):
|
| 391 |
+
break
|
| 392 |
+
print(path)
|
| 393 |
+
|
| 394 |
+
#if not os.path.exists(next_path):
|
| 395 |
+
# print(f"STOP at {epoch}")
|
| 396 |
+
# break
|
| 397 |
+
try:
|
| 398 |
+
ckpt = torch.load(path, map_location=device)
|
| 399 |
+
except Exception:
|
| 400 |
+
continue
|
| 401 |
+
suffix = '_' + args.eval_name if args.eval_name else ""
|
| 402 |
+
dest = './saved_info/dd_gan/{}/{}/eval_{}{}.json'.format(args.dataset, args.exp, args.epoch_id, suffix)
|
| 403 |
+
next_dest = './saved_info/dd_gan/{}/{}/eval_{}{}.json'.format(args.dataset, args.exp, args.epoch_id+1, suffix)
|
| 404 |
+
|
| 405 |
+
if (args.compute_fid or args.compute_clip_score) and os.path.exists(dest):
|
| 406 |
+
continue
|
| 407 |
+
print("Eval Epoch", args.epoch_id)
|
| 408 |
+
#loading weights from ddp in single gpu
|
| 409 |
+
#print(ckpt.keys())
|
| 410 |
+
for key in list(ckpt.keys()):
|
| 411 |
+
if key.startswith("module"):
|
| 412 |
+
ckpt[key[7:]] = ckpt.pop(key)
|
| 413 |
+
netG.load_state_dict(ckpt)
|
| 414 |
+
netG.eval()
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
T = get_time_schedule(args, device)
|
| 418 |
+
|
| 419 |
+
pos_coeff = Posterior_Coefficients(args, device)
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
save_dir = "./generated_samples/{}".format(args.dataset)
|
| 423 |
+
|
| 424 |
+
if not os.path.exists(save_dir):
|
| 425 |
+
os.makedirs(save_dir)
|
| 426 |
+
|
| 427 |
+
if args.compute_fid or args.compute_clip_score:
|
| 428 |
+
from torch.nn.functional import adaptive_avg_pool2d
|
| 429 |
+
from pytorch_fid.fid_score import calculate_activation_statistics, calculate_fid_given_paths, ImagePathDataset, compute_statistics_of_path, calculate_frechet_distance
|
| 430 |
+
from pytorch_fid.inception import InceptionV3
|
| 431 |
+
import random
|
| 432 |
+
random.seed(args.seed)
|
| 433 |
+
texts = open(args.cond_text).readlines()
|
| 434 |
+
texts = [t.strip() for t in texts]
|
| 435 |
+
if args.nb_images_for_fid:
|
| 436 |
+
random.shuffle(texts)
|
| 437 |
+
texts = texts[0:args.nb_images_for_fid]
|
| 438 |
+
#iters_needed = len(texts) // args.batch_size
|
| 439 |
+
#texts = list(map(lambda s:s.strip(), texts))
|
| 440 |
+
#ntimes = max(30000 // len(texts), 1)
|
| 441 |
+
#texts = texts * ntimes
|
| 442 |
+
print("Text size:", len(texts))
|
| 443 |
+
#print("Iters:", iters_needed)
|
| 444 |
+
i = 0
|
| 445 |
+
|
| 446 |
+
if args.compute_fid:
|
| 447 |
+
dims = 2048
|
| 448 |
+
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
|
| 449 |
+
inceptionv3 = InceptionV3([block_idx]).to(device)
|
| 450 |
+
|
| 451 |
+
if args.compute_clip_score:
|
| 452 |
+
import clip
|
| 453 |
+
CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
|
| 454 |
+
CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
|
| 455 |
+
clip_model, preprocess = clip.load(args.clip_model, device)
|
| 456 |
+
clip_mean = torch.Tensor(CLIP_MEAN).view(1,-1,1,1).to(device)
|
| 457 |
+
clip_std = torch.Tensor(CLIP_STD).view(1,-1,1,1).to(device)
|
| 458 |
+
|
| 459 |
+
if args.compute_fid:
|
| 460 |
+
if not args.real_img_dir.endswith("npz"):
|
| 461 |
+
real_mu, real_sigma = compute_statistics_of_path(
|
| 462 |
+
args.real_img_dir, inceptionv3, args.batch_size, dims, device,
|
| 463 |
+
resize=args.image_size,
|
| 464 |
+
)
|
| 465 |
+
np.savez("inception_statistics.npz", mu=real_mu, sigma=real_sigma)
|
| 466 |
+
else:
|
| 467 |
+
stats = np.load(args.real_img_dir)
|
| 468 |
+
real_mu = stats['mu']
|
| 469 |
+
real_sigma = stats['sigma']
|
| 470 |
+
|
| 471 |
+
fake_features = []
|
| 472 |
+
|
| 473 |
+
if args.compute_clip_score:
|
| 474 |
+
clip_scores = []
|
| 475 |
+
|
| 476 |
+
for b in range(0, len(texts), args.batch_size):
|
| 477 |
+
text = texts[b:b+args.batch_size]
|
| 478 |
+
with torch.no_grad():
|
| 479 |
+
cond = text_encoder(text, return_only_pooled=False)
|
| 480 |
+
bs = len(text)
|
| 481 |
+
t0 = time.time()
|
| 482 |
+
x_t_1 = torch.randn(bs, args.num_channels,args.image_size, args.image_size).to(device)
|
| 483 |
+
if args.guidance_scale:
|
| 484 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
| 485 |
+
else:
|
| 486 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
| 487 |
+
fake_sample = to_range_0_1(fake_sample)
|
| 488 |
+
"""
|
| 489 |
+
for j, x in enumerate(fake_sample):
|
| 490 |
+
index = i * args.batch_size + j
|
| 491 |
+
torchvision.utils.save_image(x, './generated_samples/{}/{}.jpg'.format(args.dataset, index))
|
| 492 |
+
"""
|
| 493 |
+
|
| 494 |
+
if args.compute_fid:
|
| 495 |
+
with torch.no_grad():
|
| 496 |
+
pred = inceptionv3(fake_sample)[0]
|
| 497 |
+
# If model output is not scalar, apply global spatial average pooling.
|
| 498 |
+
# This happens if you choose a dimensionality not equal 2048.
|
| 499 |
+
if pred.size(2) != 1 or pred.size(3) != 1:
|
| 500 |
+
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
|
| 501 |
+
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
|
| 502 |
+
fake_features.append(pred)
|
| 503 |
+
|
| 504 |
+
if args.compute_clip_score:
|
| 505 |
+
with torch.no_grad():
|
| 506 |
+
clip_ims = torch.nn.functional.interpolate(fake_sample, (224, 224), mode="bicubic")
|
| 507 |
+
clip_ims = (clip_ims - clip_mean) / clip_std
|
| 508 |
+
clip_txt = clip.tokenize(text, truncate=True).to(device)
|
| 509 |
+
imf = clip_model.encode_image(clip_ims)
|
| 510 |
+
txtf = clip_model.encode_text(clip_txt)
|
| 511 |
+
imf = torch.nn.functional.normalize(imf, dim=1)
|
| 512 |
+
txtf = torch.nn.functional.normalize(txtf, dim=1)
|
| 513 |
+
clip_scores.append(((imf * txtf).sum(dim=1)).cpu())
|
| 514 |
+
|
| 515 |
+
if i % 10 == 0:
|
| 516 |
+
print('evaluating batch ', i, time.time() - t0)
|
| 517 |
+
i += 1
|
| 518 |
+
|
| 519 |
+
results = {}
|
| 520 |
+
if args.compute_fid:
|
| 521 |
+
fake_features = np.concatenate(fake_features)
|
| 522 |
+
fake_mu = np.mean(fake_features, axis=0)
|
| 523 |
+
fake_sigma = np.cov(fake_features, rowvar=False)
|
| 524 |
+
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
|
| 525 |
+
results['fid'] = fid
|
| 526 |
+
if args.compute_clip_score:
|
| 527 |
+
clip_score = torch.cat(clip_scores).mean().item()
|
| 528 |
+
results['clip_score'] = clip_score
|
| 529 |
+
results.update(vars(args))
|
| 530 |
+
with open(dest, "w") as fd:
|
| 531 |
+
json.dump(results, fd)
|
| 532 |
+
print(results)
|
| 533 |
+
else:
|
| 534 |
+
if args.cond_text.endswith(".txt"):
|
| 535 |
+
texts = open(args.cond_text).readlines()
|
| 536 |
+
texts = [t.strip() for t in texts]
|
| 537 |
+
else:
|
| 538 |
+
texts = [args.cond_text] * args.batch_size
|
| 539 |
+
clip_guidance = False
|
| 540 |
+
if clip_guidance:
|
| 541 |
+
from clip_encoder import CLIPImageEncoder
|
| 542 |
+
cond = text_encoder(texts, return_only_pooled=False)
|
| 543 |
+
clip_image_model = CLIPImageEncoder().to(device)
|
| 544 |
+
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size*args.scale_factor_h, args.image_size*args.scale_factor_w).to(device)
|
| 545 |
+
fake_sample = sample_from_model_clip_guidance(pos_coeff, netG, clip_image_model, args.num_timesteps, x_t_1,T, args, texts, cond=cond, guidance_scale=args.guidance_scale)
|
| 546 |
+
fake_sample = to_range_0_1(fake_sample)
|
| 547 |
+
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
|
| 548 |
+
|
| 549 |
+
else:
|
| 550 |
+
cond = text_encoder(texts, return_only_pooled=False)
|
| 551 |
+
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size*args.scale_factor_h, args.image_size*args.scale_factor_w).to(device)
|
| 552 |
+
t0 = time.time()
|
| 553 |
+
if args.guidance_scale:
|
| 554 |
+
if args.scale_factor_h > 1 or args.scale_factor_w > 1:
|
| 555 |
+
if args.scale_method == "convolutional":
|
| 556 |
+
split_input_params = {
|
| 557 |
+
"ks": (args.image_size, args.image_size),
|
| 558 |
+
"stride": (150, 150),
|
| 559 |
+
"clip_max_tie_weight": 0.5,
|
| 560 |
+
"clip_min_tie_weight": 0.01,
|
| 561 |
+
"clip_max_weight": 0.5,
|
| 562 |
+
"clip_min_weight": 0.01,
|
| 563 |
+
|
| 564 |
+
"tie_braker": True,
|
| 565 |
+
'vqf': 1,
|
| 566 |
+
}
|
| 567 |
+
fake_sample = sample_from_model_classifier_free_guidance_convolutional(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale, split_input_params=split_input_params)
|
| 568 |
+
elif args.scale_method == "larger_input":
|
| 569 |
+
netG.attn_resolutions = [r * args.scale_factor_w for r in netG.attn_resolutions]
|
| 570 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
| 571 |
+
else:
|
| 572 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
| 573 |
+
else:
|
| 574 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
| 575 |
+
|
| 576 |
+
print(time.time() - t0)
|
| 577 |
+
fake_sample = to_range_0_1(fake_sample)
|
| 578 |
+
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
if __name__ == '__main__':
|
| 587 |
+
parser = argparse.ArgumentParser('ddgan parameters')
|
| 588 |
+
parser.add_argument('--seed', type=int, default=1024,
|
| 589 |
+
help='seed used for initialization')
|
| 590 |
+
parser.add_argument('--compute_fid', action='store_true', default=False,
|
| 591 |
+
help='whether or not compute FID')
|
| 592 |
+
parser.add_argument('--compute_clip_score', action='store_true', default=False,
|
| 593 |
+
help='whether or not compute CLIP score')
|
| 594 |
+
parser.add_argument('--clip_model', type=str,default="ViT-L/14")
|
| 595 |
+
parser.add_argument('--eval_name', type=str,default="")
|
| 596 |
+
|
| 597 |
+
parser.add_argument('--epoch_id', type=int,default=1000)
|
| 598 |
+
parser.add_argument('--guidance_scale', type=float,default=0)
|
| 599 |
+
parser.add_argument('--dynamic_thresholding_quantile', type=float,default=0)
|
| 600 |
+
parser.add_argument('--cond_text', type=str,default="0")
|
| 601 |
+
parser.add_argument('--scale_factor_h', type=int,default=1)
|
| 602 |
+
parser.add_argument('--scale_factor_w', type=int,default=1)
|
| 603 |
+
parser.add_argument('--scale_method', type=str,default="convolutional")
|
| 604 |
+
|
| 605 |
+
parser.add_argument('--cross_attention', action='store_true',default=False)
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
parser.add_argument('--num_channels', type=int, default=3,
|
| 609 |
+
help='channel of image')
|
| 610 |
+
parser.add_argument('--centered', action='store_false', default=True,
|
| 611 |
+
help='-1,1 scale')
|
| 612 |
+
parser.add_argument('--use_geometric', action='store_true',default=False)
|
| 613 |
+
parser.add_argument('--beta_min', type=float, default= 0.1,
|
| 614 |
+
help='beta_min for diffusion')
|
| 615 |
+
parser.add_argument('--beta_max', type=float, default=20.,
|
| 616 |
+
help='beta_max for diffusion')
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
parser.add_argument('--num_channels_dae', type=int, default=128,
|
| 620 |
+
help='number of initial channels in denosing model')
|
| 621 |
+
parser.add_argument('--n_mlp', type=int, default=3,
|
| 622 |
+
help='number of mlp layers for z')
|
| 623 |
+
parser.add_argument('--ch_mult', nargs='+', type=int,
|
| 624 |
+
help='channel multiplier')
|
| 625 |
+
|
| 626 |
+
parser.add_argument('--num_res_blocks', type=int, default=2,
|
| 627 |
+
help='number of resnet blocks per scale')
|
| 628 |
+
parser.add_argument('--attn_resolutions', default=(16,),
|
| 629 |
+
help='resolution of applying attention')
|
| 630 |
+
parser.add_argument('--dropout', type=float, default=0.,
|
| 631 |
+
help='drop-out rate')
|
| 632 |
+
parser.add_argument('--resamp_with_conv', action='store_false', default=True,
|
| 633 |
+
help='always up/down sampling with conv')
|
| 634 |
+
parser.add_argument('--conditional', action='store_false', default=True,
|
| 635 |
+
help='noise conditional')
|
| 636 |
+
parser.add_argument('--fir', action='store_false', default=True,
|
| 637 |
+
help='FIR')
|
| 638 |
+
parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
|
| 639 |
+
help='FIR kernel')
|
| 640 |
+
parser.add_argument('--skip_rescale', action='store_false', default=True,
|
| 641 |
+
help='skip rescale')
|
| 642 |
+
parser.add_argument('--resblock_type', default='biggan',
|
| 643 |
+
help='tyle of resnet block, choice in biggan and ddpm')
|
| 644 |
+
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
|
| 645 |
+
help='progressive type for output')
|
| 646 |
+
parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
|
| 647 |
+
help='progressive type for input')
|
| 648 |
+
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
|
| 649 |
+
help='progressive combine method.')
|
| 650 |
+
|
| 651 |
+
parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
|
| 652 |
+
help='type of time embedding')
|
| 653 |
+
parser.add_argument('--fourier_scale', type=float, default=16.,
|
| 654 |
+
help='scale of fourier transform')
|
| 655 |
+
parser.add_argument('--not_use_tanh', action='store_true',default=False)
|
| 656 |
+
|
| 657 |
+
#geenrator and training
|
| 658 |
+
parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment')
|
| 659 |
+
parser.add_argument('--real_img_dir', default='./pytorch_fid/cifar10_train_stat.npy', help='directory to real images for FID computation')
|
| 660 |
+
|
| 661 |
+
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
|
| 662 |
+
parser.add_argument('--image_size', type=int, default=32,
|
| 663 |
+
help='size of image')
|
| 664 |
+
|
| 665 |
+
parser.add_argument('--nz', type=int, default=100)
|
| 666 |
+
parser.add_argument('--num_timesteps', type=int, default=4)
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
parser.add_argument('--z_emb_dim', type=int, default=256)
|
| 670 |
+
parser.add_argument('--t_emb_dim', type=int, default=256)
|
| 671 |
+
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
|
| 672 |
+
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
|
| 673 |
+
parser.add_argument('--masked_mean', action='store_true',default=False)
|
| 674 |
+
parser.add_argument('--nb_images_for_fid', type=int, default=0)
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
args = parser.parse_args()
|
| 681 |
+
|
| 682 |
+
sample_and_test(args)
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
|