Spaces:
Runtime error
Runtime error
Mehdi Cherti
commited on
Commit
·
8d2bdec
1
Parent(s):
23d6920
support fid eval on several epochs
Browse files- test_ddgan.py +139 -108
test_ddgan.py
CHANGED
|
@@ -130,14 +130,18 @@ def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None
|
|
| 130 |
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
|
| 131 |
x = x_init
|
| 132 |
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
|
|
|
| 133 |
with torch.no_grad():
|
| 134 |
for i in reversed(range(n_time)):
|
| 135 |
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
| 136 |
-
|
| 137 |
t_time = t
|
| 138 |
-
|
|
|
|
| 139 |
|
| 140 |
x_0_uncond = generator(x, t_time, latent_z, cond=null)
|
|
|
|
|
|
|
|
|
|
| 141 |
x_0_cond = generator(x, t_time, latent_z, cond=cond)
|
| 142 |
|
| 143 |
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
|
@@ -149,8 +153,8 @@ def sample_from_model_classifier_free_guidance(coefficients, generator, n_time,
|
|
| 149 |
|
| 150 |
|
| 151 |
# Dynamic thresholding
|
| 152 |
-
q = args.
|
| 153 |
-
print("Before", x_0.min(), x_0.max())
|
| 154 |
if q:
|
| 155 |
shape = x_0.shape
|
| 156 |
x_0_v = x_0.view(shape[0], -1)
|
|
@@ -158,7 +162,7 @@ def sample_from_model_classifier_free_guidance(coefficients, generator, n_time,
|
|
| 158 |
d.clamp_(min=1)
|
| 159 |
x_0_v = x_0_v.clamp(-d, d) / d
|
| 160 |
x_0 = x_0_v.view(shape)
|
| 161 |
-
print("After", x_0.min(), x_0.max())
|
| 162 |
|
| 163 |
x_new = sample_posterior(coefficients, x_0, x, t)
|
| 164 |
|
|
@@ -197,112 +201,138 @@ def sample_and_test(args):
|
|
| 197 |
|
| 198 |
|
| 199 |
netG = NCSNpp(args).to(device)
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
netG.eval()
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
T = get_time_schedule(args, device)
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
"""
|
| 261 |
-
for j, x in enumerate(fake_sample):
|
| 262 |
-
index = i * args.batch_size + j
|
| 263 |
-
torchvision.utils.save_image(x, './generated_samples/{}/{}.jpg'.format(args.dataset, index))
|
| 264 |
-
"""
|
| 265 |
with torch.no_grad():
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
else:
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
|
| 308 |
|
|
@@ -316,7 +346,7 @@ if __name__ == '__main__':
|
|
| 316 |
help='whether or not compute FID')
|
| 317 |
parser.add_argument('--epoch_id', type=int,default=1000)
|
| 318 |
parser.add_argument('--guidance_scale', type=float,default=0)
|
| 319 |
-
parser.add_argument('--
|
| 320 |
parser.add_argument('--cond_text', type=str,default="0")
|
| 321 |
|
| 322 |
parser.add_argument('--cross_attention', action='store_true',default=False)
|
|
@@ -388,6 +418,7 @@ if __name__ == '__main__':
|
|
| 388 |
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
|
| 389 |
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
|
| 390 |
parser.add_argument('--masked_mean', action='store_true',default=False)
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
|
|
|
|
| 130 |
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
|
| 131 |
x = x_init
|
| 132 |
null = text_encoder([""] * len(x_init), return_only_pooled=False)
|
| 133 |
+
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 134 |
with torch.no_grad():
|
| 135 |
for i in reversed(range(n_time)):
|
| 136 |
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
|
|
|
|
| 137 |
t_time = t
|
| 138 |
+
|
| 139 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 140 |
|
| 141 |
x_0_uncond = generator(x, t_time, latent_z, cond=null)
|
| 142 |
+
|
| 143 |
+
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
|
| 144 |
+
|
| 145 |
x_0_cond = generator(x, t_time, latent_z, cond=cond)
|
| 146 |
|
| 147 |
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
|
|
|
|
| 153 |
|
| 154 |
|
| 155 |
# Dynamic thresholding
|
| 156 |
+
q = args.dynamic_thresholding_quantile
|
| 157 |
+
#print("Before", x_0.min(), x_0.max())
|
| 158 |
if q:
|
| 159 |
shape = x_0.shape
|
| 160 |
x_0_v = x_0.view(shape[0], -1)
|
|
|
|
| 162 |
d.clamp_(min=1)
|
| 163 |
x_0_v = x_0_v.clamp(-d, d) / d
|
| 164 |
x_0 = x_0_v.view(shape)
|
| 165 |
+
#print("After", x_0.min(), x_0.max())
|
| 166 |
|
| 167 |
x_new = sample_posterior(coefficients, x_0, x, t)
|
| 168 |
|
|
|
|
| 201 |
|
| 202 |
|
| 203 |
netG = NCSNpp(args).to(device)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
if args.epoch_id == -1:
|
| 207 |
+
epochs = range(1000)
|
| 208 |
+
else:
|
| 209 |
+
epochs = [args.epoch_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
for epoch in epochs:
|
| 212 |
+
args.epoch_id = epoch
|
| 213 |
+
path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id)
|
| 214 |
+
if not os.path.exists(path):
|
| 215 |
+
continue
|
| 216 |
+
ckpt = torch.load(path, map_location=device)
|
| 217 |
+
dest = './saved_info/dd_gan/{}/{}/fid_{}.json'.format(args.dataset, args.exp, args.epoch_id)
|
| 218 |
+
|
| 219 |
+
if args.compute_fid and os.path.exists(dest):
|
| 220 |
+
continue
|
| 221 |
+
print("Eval Epoch", args.epoch_id)
|
| 222 |
+
#loading weights from ddp in single gpu
|
| 223 |
+
for key in list(ckpt.keys()):
|
| 224 |
+
ckpt[key[7:]] = ckpt.pop(key)
|
| 225 |
+
netG.load_state_dict(ckpt)
|
| 226 |
+
netG.eval()
|
| 227 |
|
| 228 |
+
|
| 229 |
+
T = get_time_schedule(args, device)
|
| 230 |
+
|
| 231 |
+
pos_coeff = Posterior_Coefficients(args, device)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
save_dir = "./generated_samples/{}".format(args.dataset)
|
| 235 |
+
|
| 236 |
+
if not os.path.exists(save_dir):
|
| 237 |
+
os.makedirs(save_dir)
|
| 238 |
+
|
| 239 |
+
if args.compute_fid:
|
| 240 |
+
from torch.nn.functional import adaptive_avg_pool2d
|
| 241 |
+
from pytorch_fid.fid_score import calculate_activation_statistics, calculate_fid_given_paths, ImagePathDataset, compute_statistics_of_path, calculate_frechet_distance
|
| 242 |
+
from pytorch_fid.inception import InceptionV3
|
| 243 |
+
import random
|
| 244 |
+
random.seed(args.seed)
|
| 245 |
+
texts = open(args.cond_text).readlines()
|
| 246 |
+
texts = [t.strip() for t in texts]
|
| 247 |
+
if args.nb_images_for_fid:
|
| 248 |
+
random.shuffle(texts)
|
| 249 |
+
texts = texts[0:args.nb_images_for_fid]
|
| 250 |
+
#iters_needed = len(texts) // args.batch_size
|
| 251 |
+
#texts = list(map(lambda s:s.strip(), texts))
|
| 252 |
+
#ntimes = max(30000 // len(texts), 1)
|
| 253 |
+
#texts = texts * ntimes
|
| 254 |
+
print("Text size:", len(texts))
|
| 255 |
+
#print("Iters:", iters_needed)
|
| 256 |
+
i = 0
|
| 257 |
+
dims = 2048
|
| 258 |
+
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
|
| 259 |
+
inceptionv3 = InceptionV3([block_idx]).to(device)
|
| 260 |
+
|
| 261 |
+
if not args.real_img_dir.endswith("npz"):
|
| 262 |
+
real_mu, real_sigma = compute_statistics_of_path(
|
| 263 |
+
args.real_img_dir, inceptionv3, args.batch_size, dims, device,
|
| 264 |
+
resize=args.image_size,
|
| 265 |
+
)
|
| 266 |
+
np.savez("inception_statistics.npz", mu=real_mu, sigma=real_sigma)
|
| 267 |
+
else:
|
| 268 |
+
stats = np.load(args.real_img_dir)
|
| 269 |
+
real_mu = stats['mu']
|
| 270 |
+
real_sigma = stats['sigma']
|
| 271 |
+
|
| 272 |
+
fake_features = []
|
| 273 |
+
for b in range(0, len(texts), args.batch_size):
|
| 274 |
+
text = texts[b:b+args.batch_size]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
with torch.no_grad():
|
| 276 |
+
cond = text_encoder(text, return_only_pooled=False)
|
| 277 |
+
bs = len(text)
|
| 278 |
+
t0 = time.time()
|
| 279 |
+
x_t_1 = torch.randn(bs, args.num_channels,args.image_size, args.image_size).to(device)
|
| 280 |
+
if args.guidance_scale:
|
| 281 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
| 282 |
+
else:
|
| 283 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
| 284 |
+
fake_sample = to_range_0_1(fake_sample)
|
| 285 |
+
"""
|
| 286 |
+
for j, x in enumerate(fake_sample):
|
| 287 |
+
index = i * args.batch_size + j
|
| 288 |
+
torchvision.utils.save_image(x, './generated_samples/{}/{}.jpg'.format(args.dataset, index))
|
| 289 |
+
"""
|
| 290 |
+
with torch.no_grad():
|
| 291 |
+
pred = inceptionv3(fake_sample)[0]
|
| 292 |
+
# If model output is not scalar, apply global spatial average pooling.
|
| 293 |
+
# This happens if you choose a dimensionality not equal 2048.
|
| 294 |
+
if pred.size(2) != 1 or pred.size(3) != 1:
|
| 295 |
+
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
|
| 296 |
+
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
|
| 297 |
+
fake_features.append(pred)
|
| 298 |
+
if i % 10 == 0:
|
| 299 |
+
print('generating batch ', i, time.time() - t0)
|
| 300 |
+
"""
|
| 301 |
+
if i % 10 == 0:
|
| 302 |
+
ff = np.concatenate(fake_features)
|
| 303 |
+
fake_mu = np.mean(ff, axis=0)
|
| 304 |
+
fake_sigma = np.cov(ff, rowvar=False)
|
| 305 |
+
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
|
| 306 |
+
print("FID", fid)
|
| 307 |
+
"""
|
| 308 |
+
i += 1
|
| 309 |
+
|
| 310 |
+
fake_features = np.concatenate(fake_features)
|
| 311 |
+
fake_mu = np.mean(fake_features, axis=0)
|
| 312 |
+
fake_sigma = np.cov(fake_features, rowvar=False)
|
| 313 |
+
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
|
| 314 |
+
dest = './saved_info/dd_gan/{}/{}/fid_{}.json'.format(args.dataset, args.exp, args.epoch_id)
|
| 315 |
+
results = {
|
| 316 |
+
"fid": fid,
|
| 317 |
+
}
|
| 318 |
+
results.update(vars(args))
|
| 319 |
+
with open(dest, "w") as fd:
|
| 320 |
+
json.dump(results, fd)
|
| 321 |
+
print('FID = {}'.format(fid))
|
| 322 |
else:
|
| 323 |
+
if args.cond_text.endswith(".txt"):
|
| 324 |
+
texts = open(args.cond_text).readlines()
|
| 325 |
+
texts = [t.strip() for t in texts]
|
| 326 |
+
else:
|
| 327 |
+
texts = [args.cond_text] * args.batch_size
|
| 328 |
+
cond = text_encoder(texts, return_only_pooled=False)
|
| 329 |
+
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size, args.image_size).to(device)
|
| 330 |
+
if args.guidance_scale:
|
| 331 |
+
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
|
| 332 |
+
else:
|
| 333 |
+
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
|
| 334 |
+
fake_sample = to_range_0_1(fake_sample)
|
| 335 |
+
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
|
| 336 |
|
| 337 |
|
| 338 |
|
|
|
|
| 346 |
help='whether or not compute FID')
|
| 347 |
parser.add_argument('--epoch_id', type=int,default=1000)
|
| 348 |
parser.add_argument('--guidance_scale', type=float,default=0)
|
| 349 |
+
parser.add_argument('--dynamic_thresholding_quantile', type=float,default=0)
|
| 350 |
parser.add_argument('--cond_text', type=str,default="0")
|
| 351 |
|
| 352 |
parser.add_argument('--cross_attention', action='store_true',default=False)
|
|
|
|
| 418 |
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
|
| 419 |
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
|
| 420 |
parser.add_argument('--masked_mean', action='store_true',default=False)
|
| 421 |
+
parser.add_argument('--nb_images_for_fid', type=int, default=0)
|
| 422 |
|
| 423 |
|
| 424 |
|