Spaces:
Runtime error
Runtime error
| # --------------------------------------------------------------- | |
| # Taken from the following link as is from: | |
| # https://github.com/mseitzer/pytorch-fid/blob/3d604a25516746c3a4a5548c8610e99010b2c819/src/pytorch_fid/inception.py | |
| # | |
| # The license for the original version of this file can be | |
| # found in this directory (LICENSE_pytorch_fid). | |
| # --------------------------------------------------------------- | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision | |
| try: | |
| from torchvision.models.utils import load_state_dict_from_url | |
| except ImportError: | |
| from torch.utils.model_zoo import load_url as load_state_dict_from_url | |
| # Inception weights ported to Pytorch from | |
| # http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz | |
| FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501 | |
| class InceptionV3(nn.Module): | |
| """Pretrained InceptionV3 network returning feature maps""" | |
| # Index of default block of inception to return, | |
| # corresponds to output of final average pooling | |
| DEFAULT_BLOCK_INDEX = 3 | |
| # Maps feature dimensionality to their output blocks indices | |
| BLOCK_INDEX_BY_DIM = { | |
| 64: 0, # First max pooling features | |
| 192: 1, # Second max pooling featurs | |
| 768: 2, # Pre-aux classifier features | |
| 2048: 3 # Final average pooling features | |
| } | |
| def __init__(self, | |
| output_blocks=(DEFAULT_BLOCK_INDEX,), | |
| resize_input=True, | |
| normalize_input=True, | |
| requires_grad=False, | |
| use_fid_inception=True): | |
| """Build pretrained InceptionV3 | |
| Parameters | |
| ---------- | |
| output_blocks : list of int | |
| Indices of blocks to return features of. Possible values are: | |
| - 0: corresponds to output of first max pooling | |
| - 1: corresponds to output of second max pooling | |
| - 2: corresponds to output which is fed to aux classifier | |
| - 3: corresponds to output of final average pooling | |
| resize_input : bool | |
| If true, bilinearly resizes input to width and height 299 before | |
| feeding input to model. As the network without fully connected | |
| layers is fully convolutional, it should be able to handle inputs | |
| of arbitrary size, so resizing might not be strictly needed | |
| normalize_input : bool | |
| If true, scales the input from range (0, 1) to the range the | |
| pretrained Inception network expects, namely (-1, 1) | |
| requires_grad : bool | |
| If true, parameters of the model require gradients. Possibly useful | |
| for finetuning the network | |
| use_fid_inception : bool | |
| If true, uses the pretrained Inception model used in Tensorflow's | |
| FID implementation. If false, uses the pretrained Inception model | |
| available in torchvision. The FID Inception model has different | |
| weights and a slightly different structure from torchvision's | |
| Inception model. If you want to compute FID scores, you are | |
| strongly advised to set this parameter to true to get comparable | |
| results. | |
| """ | |
| super(InceptionV3, self).__init__() | |
| self.resize_input = resize_input | |
| self.normalize_input = normalize_input | |
| self.output_blocks = sorted(output_blocks) | |
| self.last_needed_block = max(output_blocks) | |
| assert self.last_needed_block <= 3, \ | |
| 'Last possible output block index is 3' | |
| self.blocks = nn.ModuleList() | |
| if use_fid_inception: | |
| inception = fid_inception_v3() | |
| else: | |
| inception = _inception_v3(pretrained=True) | |
| # Block 0: input to maxpool1 | |
| block0 = [ | |
| inception.Conv2d_1a_3x3, | |
| inception.Conv2d_2a_3x3, | |
| inception.Conv2d_2b_3x3, | |
| nn.MaxPool2d(kernel_size=3, stride=2) | |
| ] | |
| self.blocks.append(nn.Sequential(*block0)) | |
| # Block 1: maxpool1 to maxpool2 | |
| if self.last_needed_block >= 1: | |
| block1 = [ | |
| inception.Conv2d_3b_1x1, | |
| inception.Conv2d_4a_3x3, | |
| nn.MaxPool2d(kernel_size=3, stride=2) | |
| ] | |
| self.blocks.append(nn.Sequential(*block1)) | |
| # Block 2: maxpool2 to aux classifier | |
| if self.last_needed_block >= 2: | |
| block2 = [ | |
| inception.Mixed_5b, | |
| inception.Mixed_5c, | |
| inception.Mixed_5d, | |
| inception.Mixed_6a, | |
| inception.Mixed_6b, | |
| inception.Mixed_6c, | |
| inception.Mixed_6d, | |
| inception.Mixed_6e, | |
| ] | |
| self.blocks.append(nn.Sequential(*block2)) | |
| # Block 3: aux classifier to final avgpool | |
| if self.last_needed_block >= 3: | |
| block3 = [ | |
| inception.Mixed_7a, | |
| inception.Mixed_7b, | |
| inception.Mixed_7c, | |
| nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
| ] | |
| self.blocks.append(nn.Sequential(*block3)) | |
| for param in self.parameters(): | |
| param.requires_grad = requires_grad | |
| def forward(self, inp): | |
| """Get Inception feature maps | |
| Parameters | |
| ---------- | |
| inp : torch.autograd.Variable | |
| Input tensor of shape Bx3xHxW. Values are expected to be in | |
| range (0, 1) | |
| Returns | |
| ------- | |
| List of torch.autograd.Variable, corresponding to the selected output | |
| block, sorted ascending by index | |
| """ | |
| outp = [] | |
| x = inp | |
| if self.resize_input: | |
| x = F.interpolate(x, | |
| size=(299, 299), | |
| mode='bilinear', | |
| align_corners=False) | |
| if self.normalize_input: | |
| x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) | |
| for idx, block in enumerate(self.blocks): | |
| x = block(x) | |
| if idx in self.output_blocks: | |
| outp.append(x) | |
| if idx == self.last_needed_block: | |
| break | |
| return outp | |
| def _inception_v3(*args, **kwargs): | |
| """Wraps `torchvision.models.inception_v3` | |
| Skips default weight inititialization if supported by torchvision version. | |
| See https://github.com/mseitzer/pytorch-fid/issues/28. | |
| """ | |
| try: | |
| version = tuple(map(int, torchvision.__version__.split('.')[:2])) | |
| except ValueError: | |
| # Just a caution against weird version strings | |
| version = (0,) | |
| if version >= (0, 6): | |
| kwargs['init_weights'] = False | |
| return torchvision.models.inception_v3(*args, **kwargs) | |
| def fid_inception_v3(): | |
| """Build pretrained Inception model for FID computation | |
| The Inception model for FID computation uses a different set of weights | |
| and has a slightly different structure than torchvision's Inception. | |
| This method first constructs torchvision's Inception and then patches the | |
| necessary parts that are different in the FID Inception model. | |
| """ | |
| inception = _inception_v3(num_classes=1008, | |
| aux_logits=False, | |
| pretrained=False) | |
| inception.Mixed_5b = FIDInceptionA(192, pool_features=32) | |
| inception.Mixed_5c = FIDInceptionA(256, pool_features=64) | |
| inception.Mixed_5d = FIDInceptionA(288, pool_features=64) | |
| inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) | |
| inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) | |
| inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) | |
| inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) | |
| inception.Mixed_7b = FIDInceptionE_1(1280) | |
| inception.Mixed_7c = FIDInceptionE_2(2048) | |
| state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) | |
| inception.load_state_dict(state_dict) | |
| return inception | |
| class FIDInceptionA(torchvision.models.inception.InceptionA): | |
| """InceptionA block patched for FID computation""" | |
| def __init__(self, in_channels, pool_features): | |
| super(FIDInceptionA, self).__init__(in_channels, pool_features) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch5x5 = self.branch5x5_1(x) | |
| branch5x5 = self.branch5x5_2(branch5x5) | |
| branch3x3dbl = self.branch3x3dbl_1(x) | |
| branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
| branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) | |
| # Patch: Tensorflow's average pool does not use the padded zero's in | |
| # its average calculation | |
| branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
| count_include_pad=False) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] | |
| return torch.cat(outputs, 1) | |
| class FIDInceptionC(torchvision.models.inception.InceptionC): | |
| """InceptionC block patched for FID computation""" | |
| def __init__(self, in_channels, channels_7x7): | |
| super(FIDInceptionC, self).__init__(in_channels, channels_7x7) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch7x7 = self.branch7x7_1(x) | |
| branch7x7 = self.branch7x7_2(branch7x7) | |
| branch7x7 = self.branch7x7_3(branch7x7) | |
| branch7x7dbl = self.branch7x7dbl_1(x) | |
| branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) | |
| branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) | |
| branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) | |
| branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) | |
| # Patch: Tensorflow's average pool does not use the padded zero's in | |
| # its average calculation | |
| branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
| count_include_pad=False) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] | |
| return torch.cat(outputs, 1) | |
| class FIDInceptionE_1(torchvision.models.inception.InceptionE): | |
| """First InceptionE block patched for FID computation""" | |
| def __init__(self, in_channels): | |
| super(FIDInceptionE_1, self).__init__(in_channels) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch3x3 = self.branch3x3_1(x) | |
| branch3x3 = [ | |
| self.branch3x3_2a(branch3x3), | |
| self.branch3x3_2b(branch3x3), | |
| ] | |
| branch3x3 = torch.cat(branch3x3, 1) | |
| branch3x3dbl = self.branch3x3dbl_1(x) | |
| branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
| branch3x3dbl = [ | |
| self.branch3x3dbl_3a(branch3x3dbl), | |
| self.branch3x3dbl_3b(branch3x3dbl), | |
| ] | |
| branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
| # Patch: Tensorflow's average pool does not use the padded zero's in | |
| # its average calculation | |
| branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
| count_include_pad=False) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
| return torch.cat(outputs, 1) | |
| class FIDInceptionE_2(torchvision.models.inception.InceptionE): | |
| """Second InceptionE block patched for FID computation""" | |
| def __init__(self, in_channels): | |
| super(FIDInceptionE_2, self).__init__(in_channels) | |
| def forward(self, x): | |
| branch1x1 = self.branch1x1(x) | |
| branch3x3 = self.branch3x3_1(x) | |
| branch3x3 = [ | |
| self.branch3x3_2a(branch3x3), | |
| self.branch3x3_2b(branch3x3), | |
| ] | |
| branch3x3 = torch.cat(branch3x3, 1) | |
| branch3x3dbl = self.branch3x3dbl_1(x) | |
| branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
| branch3x3dbl = [ | |
| self.branch3x3dbl_3a(branch3x3dbl), | |
| self.branch3x3dbl_3b(branch3x3dbl), | |
| ] | |
| branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
| # Patch: The FID Inception model uses max pooling instead of average | |
| # pooling. This is likely an error in this specific Inception | |
| # implementation, as other Inception models use average pooling here | |
| # (which matches the description in the paper). | |
| branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) | |
| branch_pool = self.branch_pool(branch_pool) | |
| outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
| return torch.cat(outputs, 1) |