import gradio as gr from image_dataset import ImageDataset from image_wgan import ImageWgan import os from os.path import exists from PIL import Image def init(): generated_samples_folder = "." discriminator_saved_model = "discriminator64.model" generator_saved_model = "generator64.model" latent_space = 100 image_wgan = ImageWgan( image_shape = (4,64,64), latent_space_dimension=latent_space, generator_saved_model=generator_saved_model if exists(generator_saved_model) else None, discriminator_saved_model=discriminator_saved_model if exists(discriminator_saved_model) else None ) image_wgan.generate( sample_folder=generated_samples_folder ) crop() def crop(): import generator res = 64 if res != 0: results = "generated.png" img = Image.open(results) width,height = img.size top = 2 bottom = 2 for i in range(4): left = (res+2)*i +2 right = width-(res+2)*i imgcrop = img.crop((left,top,left+res,res+2)) imgcrop.save(str(i)+".png") init() def gen(): init() crop() img = Image.open("0.png") return img iface = gr.Interface( fn=gen, inputs=None, outputs="image"), theme="darkhuggingface" iface.launch(debug = True)