Spaces:
Runtime error
Runtime error
Upload discriminator.py
Browse files- discriminator.py +37 -0
discriminator.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Discriminator(nn.Module):
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
image_shape: (int, int, int),
|
| 11 |
+
use_cuda: bool = False,
|
| 12 |
+
saved_model: str or None = None
|
| 13 |
+
):
|
| 14 |
+
super(Discriminator, self).__init__()
|
| 15 |
+
|
| 16 |
+
self.model = nn.Sequential(
|
| 17 |
+
nn.Linear(int(np.prod(image_shape)), 512),
|
| 18 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 19 |
+
nn.Linear(512, 256),
|
| 20 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 21 |
+
nn.Linear(256, 1),
|
| 22 |
+
)
|
| 23 |
+
if saved_model is not None:
|
| 24 |
+
self.model.load_state_dict(
|
| 25 |
+
torch.load(
|
| 26 |
+
saved_model,
|
| 27 |
+
map_location=torch.device('cuda' if use_cuda else 'cpu')
|
| 28 |
+
)
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
def forward(self, img):
|
| 32 |
+
img_flat = img.view(img.shape[0], -1)
|
| 33 |
+
validity = self.model(img_flat)
|
| 34 |
+
return validity
|
| 35 |
+
|
| 36 |
+
def save(self, to):
|
| 37 |
+
torch.save(self.model.state_dict(), to)
|