Spaces:
Runtime error
Runtime error
Upload image_wgan.py
Browse files- image_wgan.py +119 -0
image_wgan.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from os import mkdir
|
| 2 |
+
from os.path import exists
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch.autograd import Variable
|
| 8 |
+
from torch.utils.data import DataLoader
|
| 9 |
+
from torchvision.utils import save_image
|
| 10 |
+
|
| 11 |
+
from ml.pytorch.image_dataset import ImageDataset
|
| 12 |
+
from ml.pytorch.wgan.discriminator import Discriminator
|
| 13 |
+
from ml.pytorch.wgan.generator import Generator
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class ImageWgan:
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
image_shape: (int, int, int),
|
| 20 |
+
latent_space_dimension: int = 100,
|
| 21 |
+
use_cuda: bool = False,
|
| 22 |
+
generator_saved_model: str or None = None,
|
| 23 |
+
discriminator_saved_model: str or None = None
|
| 24 |
+
):
|
| 25 |
+
self.generator = Generator(image_shape, latent_space_dimension, use_cuda, generator_saved_model)
|
| 26 |
+
self.discriminator = Discriminator(image_shape, use_cuda, discriminator_saved_model)
|
| 27 |
+
|
| 28 |
+
self.image_shape = image_shape
|
| 29 |
+
self.latent_space_dimension = latent_space_dimension
|
| 30 |
+
self.use_cuda = use_cuda
|
| 31 |
+
if use_cuda:
|
| 32 |
+
self.generator.cuda()
|
| 33 |
+
self.discriminator.cuda()
|
| 34 |
+
|
| 35 |
+
def train(
|
| 36 |
+
self,
|
| 37 |
+
image_dataset: ImageDataset,
|
| 38 |
+
learning_rate: float = 0.00005,
|
| 39 |
+
batch_size: int = 64,
|
| 40 |
+
workers: int = 8,
|
| 41 |
+
epochs: int = 100,
|
| 42 |
+
clip_value: float = 0.01,
|
| 43 |
+
discriminator_steps: int = 5,
|
| 44 |
+
sample_interval: int = 1000,
|
| 45 |
+
sample_folder: str = 'samples',
|
| 46 |
+
generator_save_file: str = 'generator.model',
|
| 47 |
+
discriminator_save_file: str = 'discriminator.model'
|
| 48 |
+
):
|
| 49 |
+
if not exists(sample_folder):
|
| 50 |
+
mkdir(sample_folder)
|
| 51 |
+
|
| 52 |
+
generator_optimizer = torch.optim.RMSprop(self.generator.parameters(), lr=learning_rate)
|
| 53 |
+
discriminator_optimizer = torch.optim.RMSprop(self.discriminator.parameters(), lr=learning_rate)
|
| 54 |
+
|
| 55 |
+
Tensor = torch.cuda.FloatTensor if self.use_cuda else torch.FloatTensor
|
| 56 |
+
|
| 57 |
+
data_loader = torch.utils.data.DataLoader(
|
| 58 |
+
image_dataset,
|
| 59 |
+
batch_size=batch_size,
|
| 60 |
+
shuffle=True,
|
| 61 |
+
num_workers=workers
|
| 62 |
+
)
|
| 63 |
+
batches_done = 0
|
| 64 |
+
for epoch in range(epochs):
|
| 65 |
+
for i, imgs in enumerate(data_loader):
|
| 66 |
+
real_imgs = Variable(imgs.type(Tensor))
|
| 67 |
+
|
| 68 |
+
discriminator_optimizer.zero_grad()
|
| 69 |
+
|
| 70 |
+
# Sample noise as generator input
|
| 71 |
+
z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], self.latent_space_dimension))))
|
| 72 |
+
|
| 73 |
+
fake_imgs = self.generator(z).detach()
|
| 74 |
+
# Adversarial loss
|
| 75 |
+
discriminator_loss = -torch.mean(self.discriminator(real_imgs)) + torch.mean(self.discriminator(fake_imgs))
|
| 76 |
+
|
| 77 |
+
discriminator_loss.backward()
|
| 78 |
+
discriminator_optimizer.step()
|
| 79 |
+
|
| 80 |
+
# Clip weights of discriminator
|
| 81 |
+
for p in self.discriminator.parameters():
|
| 82 |
+
p.data.clamp_(-clip_value, clip_value)
|
| 83 |
+
|
| 84 |
+
# Train the generator every n_critic iterations
|
| 85 |
+
if i % discriminator_steps == 0:
|
| 86 |
+
generator_optimizer.zero_grad()
|
| 87 |
+
|
| 88 |
+
# Generate a batch of images
|
| 89 |
+
gen_imgs = self.generator(z)
|
| 90 |
+
# Adversarial loss
|
| 91 |
+
generator_loss = -torch.mean(self.discriminator(gen_imgs))
|
| 92 |
+
|
| 93 |
+
generator_loss.backward()
|
| 94 |
+
generator_optimizer.step()
|
| 95 |
+
|
| 96 |
+
print(
|
| 97 |
+
f'[Epoch {epoch}/{epochs}] [Batch {batches_done % len(data_loader)}/{len(data_loader)}] ' +
|
| 98 |
+
f'[D loss: {discriminator_loss.item()}] [G loss: {generator_loss.item()}]'
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
if batches_done % sample_interval == 0:
|
| 102 |
+
save_image(gen_imgs.data[:25], f'{sample_folder}/{batches_done}.png', nrow=5, normalize=True)
|
| 103 |
+
batches_done += 1
|
| 104 |
+
self.discriminator.save(discriminator_save_file)
|
| 105 |
+
self.generator.save(generator_save_file)
|
| 106 |
+
|
| 107 |
+
def generate(
|
| 108 |
+
self,
|
| 109 |
+
sample_folder: str = 'samples'
|
| 110 |
+
):
|
| 111 |
+
if not exists(sample_folder):
|
| 112 |
+
mkdir(sample_folder)
|
| 113 |
+
|
| 114 |
+
Tensor = torch.cuda.FloatTensor if self.use_cuda else torch.FloatTensor
|
| 115 |
+
z = Variable(Tensor(np.random.normal(0, 1, (self.image_shape[0], self.latent_space_dimension))))
|
| 116 |
+
gen_imgs = self.generator(z)
|
| 117 |
+
generator_loss = -torch.mean(self.discriminator(gen_imgs))
|
| 118 |
+
generator_loss.backward()
|
| 119 |
+
save_image(gen_imgs.data[:25], f'{sample_folder}/generated.png', nrow=5, normalize=True)
|