File size: 1,655 Bytes
e0b1654
8a82feb
 
927cd84
 
ed573a5
806a9c8
dec6f1b
7c52e38
0e20c0a
 
 
 
 
 
 
 
 
 
d14bea4
0e20c0a
3ca4172
0e20c0a
 
ae14095
0e20c0a
eeb12be
0e20c0a
636d4f9
0e20c0a
 
 
 
 
 
 
 
 
 
 
 
 
636d4f9
6f8a598
 
dc4d049
3ca4172
 
ae8be33
0e20c0a
 
dc4d049
806a9c8
cd1ec07
dc4d049
ae14095
59f395e
90c55ab
ec03d09
59f395e
 
 
e0b1654
a9e687d
 
cc46ff1
59f395e
d01180c
1d6a3fa
ec03d09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
from image_dataset import ImageDataset
from image_wgan import ImageWgan
import os
from os.path import exists
from PIL import Image, ImageEnhance
import numpy
def init():
    generated_samples_folder = "."
    discriminator_saved_model = "discriminator64.model"
    generator_saved_model = "generator64.model"
    latent_space = 100
    image_wgan = ImageWgan(
        image_shape = (4,64,64),
        latent_space_dimension=latent_space,
        generator_saved_model=generator_saved_model if exists(generator_saved_model) else None,
        discriminator_saved_model=discriminator_saved_model if exists(discriminator_saved_model) else None
    )
    image_wgan.generate(
        sample_folder=generated_samples_folder
    )
    crop()

def crop():

    import generator
    res = 64
    if res != 0:
        results = "generated.png"
        img = Image.open(results)

        width,height = img.size


        top = 2
        bottom = 2
        for i in range(4):
            left = (res+2)*i +2
            right = width-(res+2)*i
            imgcrop = img.crop((left,top,left+res,res+2))


            imgcrop.save(str(i)+".png")     
        fav = img.crop((10,10,18,18))
        fav.save("icon.png")
init()





import numpy
def gen(seed):
    numpy.random.seed(int(seed))
    init()
    crop()
    imgArr = []
    for i in range(4):
        img = Image.open(str(i)+".png")
        imgArr.append(i)
 
    return imgArr

iface = gr.Interface(
    fn=gen, 
    inputs=gr.Slider(0,1000,500,step = 0.01),
    outputs=gr.Gallery(label="Generated Skins")
    
)
iface.launch(inline=True,share=True,width=64,height=64,enable_queue=True)