mebubo commited on
Commit
91f2f92
·
0 Parent(s):
Files changed (4) hide show
  1. .gitignore +3 -0
  2. app.py +144 -0
  3. requirements.txt +8 -0
  4. shell.nix +12 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ /.aider*
2
+ /.env
3
+ /.venv/
app.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #%%
2
+ from dataclasses import dataclass
3
+ import torch
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ from pprint import pprint
6
+
7
+ #%%
8
+
9
+ model_name="mistralai/Mistral-7B-v0.1"
10
+
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ # model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
13
+ model = AutoModelForCausalLM.from_pretrained(model_name)
14
+
15
+ # Move the model to GPU if available
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ model.to(device)
18
+
19
+ #%%
20
+
21
+ input_text = "I just drive to the store to but eggs, but they had some."
22
+ input_text = "He asked me to prostate myself before the king, but I rifused."
23
+ input_text = "He asked me to prostrate myself before the king, but I rifused."
24
+
25
+ #%%
26
+ inputs = tokenizer(input_text, return_tensors="pt").to(device)
27
+ input_ids = inputs["input_ids"]
28
+ labels = input_ids
29
+
30
+ #%%
31
+ with torch.no_grad():
32
+ outputs = model(**inputs, labels=labels)
33
+
34
+ #%%
35
+
36
+ # Get logits and shift them
37
+ logits = outputs.logits[0, :-1, :]
38
+
39
+ # Calculate log probabilities
40
+ log_probs = torch.log_softmax(logits, dim=-1)
41
+
42
+ # Get the log probability of each token in the sequence
43
+ token_log_probs = log_probs[range(log_probs.shape[0]), input_ids[0][1:]]
44
+
45
+ # Decode tokens and pair them with their log probabilities
46
+ tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
47
+ result = list(zip(tokens[1:], token_log_probs.tolist()))
48
+
49
+ #%%
50
+ for token, logprob in result:
51
+ print(f"Token: {token}, Log Probability: {logprob:.4f}")
52
+
53
+ # %%
54
+ words = []
55
+ current_word = []
56
+ current_log_probs = []
57
+
58
+ for token, logprob in result:
59
+ if not token.startswith(chr(9601)) and token.isalpha():
60
+ current_word.append(token)
61
+ current_log_probs.append(logprob)
62
+ else:
63
+ if current_word:
64
+ words.append(("".join(current_word), sum(current_log_probs)))
65
+ current_word = [token]
66
+ current_log_probs = [logprob]
67
+
68
+ if current_word:
69
+ words.append(("".join(current_word), sum(current_log_probs)))
70
+
71
+ for word, avg_logprob in words:
72
+ print(f"Word: {word}, Log Probability: {avg_logprob:.4f}")
73
+
74
+ # %%
75
+
76
+ @dataclass
77
+ class Word:
78
+ tokens: list[int]
79
+ text: str
80
+ logprob: float
81
+ first_token_index: int
82
+
83
+ def split_into_words(tokens, log_probs) -> list[Word]:
84
+ words = []
85
+ current_word = []
86
+ current_log_probs = []
87
+ current_word_first_token_index = 0
88
+
89
+ for i, (token, logprob) in enumerate(zip(tokens, log_probs)):
90
+ if not token.startswith(chr(9601)) and token.isalpha():
91
+ current_word.append(token)
92
+ current_log_probs.append(logprob)
93
+ else:
94
+ if current_word:
95
+ words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
96
+ current_word = [token]
97
+ current_log_probs = [logprob]
98
+ current_word_first_token_index = i
99
+
100
+ if current_word:
101
+ words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
102
+
103
+ return words
104
+
105
+ words = split_into_words(tokens[1:], token_log_probs)
106
+
107
+
108
+ #%%
109
+ def generate_replacements(model, tokenizer, prefix, num_samples=5):
110
+ input_context = tokenizer(prefix, return_tensors="pt").to(device)
111
+ input_ids = input_context["input_ids"]
112
+
113
+ new_words = []
114
+ for _ in range(num_samples):
115
+ with torch.no_grad():
116
+ outputs = model.generate(
117
+ input_ids=input_ids,
118
+ max_length=input_ids.shape[-1] + 5, # generate a few tokens beyond the prefix
119
+ num_return_sequences=1,
120
+ temperature=1.0,
121
+ top_k=50, # use top-k sampling
122
+ top_p=0.95, # use nucleus sampling
123
+ do_sample=True
124
+ )
125
+
126
+ generated_ids = outputs[0][input_ids.shape[-1]:] # extract the newly generated part
127
+ new_word = tokenizer.decode(generated_ids, skip_special_tokens=True).split()[0]
128
+ new_words.append(new_word)
129
+
130
+ return new_words
131
+
132
+ # Generate new words for low probability words
133
+ for word in low_prob_words:
134
+ prefix_index = word.first_token_index
135
+ prefix_tokens = tokens[:prefix_index + 1] # include the word itself
136
+ prefix = tokenizer.convert_tokens_to_string(prefix_tokens)
137
+
138
+ replacements = generate_replacements(model, tokenizer, prefix)
139
+
140
+ print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}")
141
+ print(f"Proposed replacements: {replacements}")
142
+ print()
143
+
144
+ # %%
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ openai
2
+ ipykernel
3
+ ipywidgets
4
+ # pyzmq==25.1.2
5
+ notebook
6
+ transformers
7
+ torch
8
+ huggingface_hub
shell.nix ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ let
2
+
3
+ nixpkgs = import <nixpkgs> {};
4
+ pkgs = nixpkgs.pkgs;
5
+
6
+ in
7
+
8
+ pkgs.mkShell {
9
+ shellHook = ''
10
+ export LD_LIBRARY_PATH=${pkgs.stdenv.cc.cc.lib}/lib/
11
+ '';
12
+ }