Commit
·
91f2f92
0
Parent(s):
Init
Browse files- .gitignore +3 -0
- app.py +144 -0
- requirements.txt +8 -0
- shell.nix +12 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
/.aider*
|
2 |
+
/.env
|
3 |
+
/.venv/
|
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#%%
|
2 |
+
from dataclasses import dataclass
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from pprint import pprint
|
6 |
+
|
7 |
+
#%%
|
8 |
+
|
9 |
+
model_name="mistralai/Mistral-7B-v0.1"
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Move the model to GPU if available
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
#%%
|
20 |
+
|
21 |
+
input_text = "I just drive to the store to but eggs, but they had some."
|
22 |
+
input_text = "He asked me to prostate myself before the king, but I rifused."
|
23 |
+
input_text = "He asked me to prostrate myself before the king, but I rifused."
|
24 |
+
|
25 |
+
#%%
|
26 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
27 |
+
input_ids = inputs["input_ids"]
|
28 |
+
labels = input_ids
|
29 |
+
|
30 |
+
#%%
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs, labels=labels)
|
33 |
+
|
34 |
+
#%%
|
35 |
+
|
36 |
+
# Get logits and shift them
|
37 |
+
logits = outputs.logits[0, :-1, :]
|
38 |
+
|
39 |
+
# Calculate log probabilities
|
40 |
+
log_probs = torch.log_softmax(logits, dim=-1)
|
41 |
+
|
42 |
+
# Get the log probability of each token in the sequence
|
43 |
+
token_log_probs = log_probs[range(log_probs.shape[0]), input_ids[0][1:]]
|
44 |
+
|
45 |
+
# Decode tokens and pair them with their log probabilities
|
46 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
47 |
+
result = list(zip(tokens[1:], token_log_probs.tolist()))
|
48 |
+
|
49 |
+
#%%
|
50 |
+
for token, logprob in result:
|
51 |
+
print(f"Token: {token}, Log Probability: {logprob:.4f}")
|
52 |
+
|
53 |
+
# %%
|
54 |
+
words = []
|
55 |
+
current_word = []
|
56 |
+
current_log_probs = []
|
57 |
+
|
58 |
+
for token, logprob in result:
|
59 |
+
if not token.startswith(chr(9601)) and token.isalpha():
|
60 |
+
current_word.append(token)
|
61 |
+
current_log_probs.append(logprob)
|
62 |
+
else:
|
63 |
+
if current_word:
|
64 |
+
words.append(("".join(current_word), sum(current_log_probs)))
|
65 |
+
current_word = [token]
|
66 |
+
current_log_probs = [logprob]
|
67 |
+
|
68 |
+
if current_word:
|
69 |
+
words.append(("".join(current_word), sum(current_log_probs)))
|
70 |
+
|
71 |
+
for word, avg_logprob in words:
|
72 |
+
print(f"Word: {word}, Log Probability: {avg_logprob:.4f}")
|
73 |
+
|
74 |
+
# %%
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class Word:
|
78 |
+
tokens: list[int]
|
79 |
+
text: str
|
80 |
+
logprob: float
|
81 |
+
first_token_index: int
|
82 |
+
|
83 |
+
def split_into_words(tokens, log_probs) -> list[Word]:
|
84 |
+
words = []
|
85 |
+
current_word = []
|
86 |
+
current_log_probs = []
|
87 |
+
current_word_first_token_index = 0
|
88 |
+
|
89 |
+
for i, (token, logprob) in enumerate(zip(tokens, log_probs)):
|
90 |
+
if not token.startswith(chr(9601)) and token.isalpha():
|
91 |
+
current_word.append(token)
|
92 |
+
current_log_probs.append(logprob)
|
93 |
+
else:
|
94 |
+
if current_word:
|
95 |
+
words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
|
96 |
+
current_word = [token]
|
97 |
+
current_log_probs = [logprob]
|
98 |
+
current_word_first_token_index = i
|
99 |
+
|
100 |
+
if current_word:
|
101 |
+
words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
|
102 |
+
|
103 |
+
return words
|
104 |
+
|
105 |
+
words = split_into_words(tokens[1:], token_log_probs)
|
106 |
+
|
107 |
+
|
108 |
+
#%%
|
109 |
+
def generate_replacements(model, tokenizer, prefix, num_samples=5):
|
110 |
+
input_context = tokenizer(prefix, return_tensors="pt").to(device)
|
111 |
+
input_ids = input_context["input_ids"]
|
112 |
+
|
113 |
+
new_words = []
|
114 |
+
for _ in range(num_samples):
|
115 |
+
with torch.no_grad():
|
116 |
+
outputs = model.generate(
|
117 |
+
input_ids=input_ids,
|
118 |
+
max_length=input_ids.shape[-1] + 5, # generate a few tokens beyond the prefix
|
119 |
+
num_return_sequences=1,
|
120 |
+
temperature=1.0,
|
121 |
+
top_k=50, # use top-k sampling
|
122 |
+
top_p=0.95, # use nucleus sampling
|
123 |
+
do_sample=True
|
124 |
+
)
|
125 |
+
|
126 |
+
generated_ids = outputs[0][input_ids.shape[-1]:] # extract the newly generated part
|
127 |
+
new_word = tokenizer.decode(generated_ids, skip_special_tokens=True).split()[0]
|
128 |
+
new_words.append(new_word)
|
129 |
+
|
130 |
+
return new_words
|
131 |
+
|
132 |
+
# Generate new words for low probability words
|
133 |
+
for word in low_prob_words:
|
134 |
+
prefix_index = word.first_token_index
|
135 |
+
prefix_tokens = tokens[:prefix_index + 1] # include the word itself
|
136 |
+
prefix = tokenizer.convert_tokens_to_string(prefix_tokens)
|
137 |
+
|
138 |
+
replacements = generate_replacements(model, tokenizer, prefix)
|
139 |
+
|
140 |
+
print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}")
|
141 |
+
print(f"Proposed replacements: {replacements}")
|
142 |
+
print()
|
143 |
+
|
144 |
+
# %%
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
ipykernel
|
3 |
+
ipywidgets
|
4 |
+
# pyzmq==25.1.2
|
5 |
+
notebook
|
6 |
+
transformers
|
7 |
+
torch
|
8 |
+
huggingface_hub
|
shell.nix
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
let
|
2 |
+
|
3 |
+
nixpkgs = import <nixpkgs> {};
|
4 |
+
pkgs = nixpkgs.pkgs;
|
5 |
+
|
6 |
+
in
|
7 |
+
|
8 |
+
pkgs.mkShell {
|
9 |
+
shellHook = ''
|
10 |
+
export LD_LIBRARY_PATH=${pkgs.stdenv.cc.cc.lib}/lib/
|
11 |
+
'';
|
12 |
+
}
|