Working probs in UI
Browse files- completions.py +34 -56
- expand_llm.py +18 -2
- frontend/src/components/App.tsx +3 -8
- frontend/src/components/WordChip.tsx +12 -5
- frontend/src/interfaces.ts +10 -0
- models.py +5 -1
completions.py
CHANGED
@@ -1,16 +1,13 @@
|
|
1 |
#%%
|
2 |
from dataclasses import dataclass
|
3 |
-
import math
|
4 |
-
import time
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
|
7 |
from transformers.generation.utils import GenerateOutput
|
8 |
|
9 |
-
from models import ApiWord, Word
|
10 |
-
|
11 |
-
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
|
12 |
-
|
13 |
from combine import combine
|
|
|
|
|
14 |
|
15 |
def starts_with_space(token: str) -> bool:
|
16 |
return token.startswith(chr(9601)) or token.startswith(chr(288))
|
@@ -74,10 +71,6 @@ def calculate_log_probabilities(model: PreTrainedModel, tokenizer: Tokenizer, in
|
|
74 |
tokens: torch.Tensor = input_ids[0][1:]
|
75 |
return list(zip(tokens.tolist(), token_log_probs.tolist()))
|
76 |
|
77 |
-
def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
|
78 |
-
texts = [tokenizer.decode(context, skip_special_tokens=True) for context in contexts]
|
79 |
-
return tokenizer(texts, return_tensors="pt", padding=True).to(device)
|
80 |
-
|
81 |
def generate_outputs(model: PreTrainedModel, inputs: BatchEncoding, num_samples: int = 5) -> GenerateOutput | torch.LongTensor:
|
82 |
input_ids = inputs["input_ids"]
|
83 |
attention_mask = inputs["attention_mask"]
|
@@ -95,44 +88,6 @@ def generate_outputs(model: PreTrainedModel, inputs: BatchEncoding, num_samples:
|
|
95 |
)
|
96 |
return outputs
|
97 |
|
98 |
-
def find_next_tokens_0(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer, min_p: float) -> list[list[tuple[int, str, float]]]:
|
99 |
-
input_ids = inputs["input_ids"]
|
100 |
-
attention_mask = inputs["attention_mask"]
|
101 |
-
with torch.no_grad():
|
102 |
-
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
103 |
-
logits: torch.Tensor = outputs.logits[:, -1, :]
|
104 |
-
log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
|
105 |
-
# for every batch item, find all tokens with log prob greater than min_p, and return their ids and log probs
|
106 |
-
result = []
|
107 |
-
print(f"{log_probs.shape=}")
|
108 |
-
for probs in log_probs:
|
109 |
-
result.append([(i, tokenizer.convert_ids_to_tokens([i])[0], p) for i, p in enumerate(probs) if p > min_p])
|
110 |
-
return result
|
111 |
-
|
112 |
-
def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer) -> list[list[tuple[int, float]]]:
|
113 |
-
input_ids = inputs["input_ids"]
|
114 |
-
attention_mask = inputs["attention_mask"]
|
115 |
-
with torch.no_grad():
|
116 |
-
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
117 |
-
logits: torch.Tensor = outputs.logits[:, -1, :]
|
118 |
-
log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
|
119 |
-
result = []
|
120 |
-
for probs in log_probs:
|
121 |
-
result.append([(i, p.item()) for i, p in enumerate(probs)])
|
122 |
-
return result
|
123 |
-
|
124 |
-
def extract_replacements(outputs: GenerateOutput | torch.LongTensor, tokenizer: Tokenizer, num_inputs: int, input_len: int, num_samples: int = 5) -> list[list[str]]:
|
125 |
-
all_new_words = []
|
126 |
-
for i in range(num_inputs):
|
127 |
-
replacements = set()
|
128 |
-
for j in range(num_samples):
|
129 |
-
generated_ids = outputs[i * num_samples + j][input_len:]
|
130 |
-
new_word = tokenizer.convert_ids_to_tokens(generated_ids.tolist())[0]
|
131 |
-
if starts_with_space(new_word):
|
132 |
-
replacements.add(" " +new_word[1:])
|
133 |
-
all_new_words.append(sorted(list(replacements)))
|
134 |
-
return all_new_words
|
135 |
-
|
136 |
#%%
|
137 |
|
138 |
def load_model() -> tuple[PreTrainedModel, Tokenizer, torch.device]:
|
@@ -153,16 +108,39 @@ def check_text(input_text: str, model: PreTrainedModel, tokenizer: Tokenizer, de
|
|
153 |
low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]
|
154 |
|
155 |
contexts = [word.context for _, word in low_prob_words]
|
156 |
-
inputs = prepare_inputs(contexts, tokenizer, device)
|
157 |
-
input_ids = inputs["input_ids"]
|
158 |
|
159 |
-
num_samples = 10
|
160 |
-
start_time = time.time()
|
161 |
-
outputs = generate_outputs(model, inputs, num_samples)
|
162 |
-
end_time = time.time()
|
163 |
-
print(f"Total time taken for replacements: {end_time - start_time:.4f} seconds")
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
low_prob_words_with_replacements = { i: (w, r) for (i, w), r in zip(low_prob_words, replacements) }
|
168 |
|
|
|
1 |
#%%
|
2 |
from dataclasses import dataclass
|
|
|
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
|
5 |
from transformers.generation.utils import GenerateOutput
|
6 |
|
7 |
+
from models import ApiWord, Word, Replacement
|
|
|
|
|
|
|
8 |
from combine import combine
|
9 |
+
from expand import *
|
10 |
+
from expand_llm import *
|
11 |
|
12 |
def starts_with_space(token: str) -> bool:
|
13 |
return token.startswith(chr(9601)) or token.startswith(chr(288))
|
|
|
71 |
tokens: torch.Tensor = input_ids[0][1:]
|
72 |
return list(zip(tokens.tolist(), token_log_probs.tolist()))
|
73 |
|
|
|
|
|
|
|
|
|
74 |
def generate_outputs(model: PreTrainedModel, inputs: BatchEncoding, num_samples: int = 5) -> GenerateOutput | torch.LongTensor:
|
75 |
input_ids = inputs["input_ids"]
|
76 |
attention_mask = inputs["attention_mask"]
|
|
|
88 |
)
|
89 |
return outputs
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
#%%
|
92 |
|
93 |
def load_model() -> tuple[PreTrainedModel, Tokenizer, torch.device]:
|
|
|
108 |
low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]
|
109 |
|
110 |
contexts = [word.context for _, word in low_prob_words]
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
expander = ExpanderOneBatchLLM(model, tokenizer)
|
114 |
+
|
115 |
+
#%%
|
116 |
+
series = []
|
117 |
+
for i, x in enumerate(contexts):
|
118 |
+
series.append(Series(id=i, tokens=x, budget=5.0))
|
119 |
+
|
120 |
+
#%%
|
121 |
+
batch = Batch(items=series)
|
122 |
+
|
123 |
+
#%%
|
124 |
+
stopping_criterion = create_stopping_criterion_llm(tokenizer)
|
125 |
+
|
126 |
+
#%%
|
127 |
+
expanded = expand(batch, expander, stopping_criterion)
|
128 |
+
|
129 |
+
# group by series id
|
130 |
+
expanded_by_id: dict[int, list[list[Expansion]]] = defaultdict(list)
|
131 |
+
for result in expanded.items:
|
132 |
+
expanded_by_id[result.series.id].extend(result.expansions)
|
133 |
+
|
134 |
+
replacements: list[list[Replacement]] = []
|
135 |
+
for i, _ in enumerate(contexts):
|
136 |
+
r = []
|
137 |
+
expansions = expanded_by_id[i]
|
138 |
+
for exp in expansions:
|
139 |
+
tokens = [e.token for e in exp]
|
140 |
+
s = tokenizer.decode(tokens)
|
141 |
+
logprob = sum(e.cost for e in exp)
|
142 |
+
r.append(Replacement(text=s, logprob=logprob))
|
143 |
+
replacements.append(r)
|
144 |
|
145 |
low_prob_words_with_replacements = { i: (w, r) for (i, w), r in zip(low_prob_words, replacements) }
|
146 |
|
expand_llm.py
CHANGED
@@ -1,10 +1,26 @@
|
|
|
|
1 |
from expand import *
|
2 |
-
from transformers import
|
3 |
from dataclasses import dataclass
|
4 |
-
from completions import prepare_inputs, find_next_tokens
|
5 |
|
6 |
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
@dataclass
|
9 |
class ExpanderOneBatchLLM:
|
10 |
model: PreTrainedModel
|
|
|
1 |
+
import torch
|
2 |
from expand import *
|
3 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
|
4 |
from dataclasses import dataclass
|
|
|
5 |
|
6 |
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
|
7 |
|
8 |
+
def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer) -> list[list[tuple[int, float]]]:
|
9 |
+
input_ids = inputs["input_ids"]
|
10 |
+
attention_mask = inputs["attention_mask"]
|
11 |
+
with torch.no_grad():
|
12 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
13 |
+
logits: torch.Tensor = outputs.logits[:, -1, :]
|
14 |
+
log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
|
15 |
+
result = []
|
16 |
+
for probs in log_probs:
|
17 |
+
result.append([(i, p.item()) for i, p in enumerate(probs)])
|
18 |
+
return result
|
19 |
+
|
20 |
+
def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
|
21 |
+
texts = [tokenizer.decode(context, skip_special_tokens=True) for context in contexts]
|
22 |
+
return tokenizer(texts, return_tensors="pt", padding=True).to(device)
|
23 |
+
|
24 |
@dataclass
|
25 |
class ExpanderOneBatchLLM:
|
26 |
model: PreTrainedModel
|
frontend/src/components/App.tsx
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
import React, { useState } from "react"
|
2 |
import { WordChip } from "./WordChip"
|
3 |
import { Spinner } from "./Spinner"
|
4 |
-
|
5 |
-
interface Word {
|
6 |
-
text: string
|
7 |
-
logprob: number
|
8 |
-
replacements: string[]
|
9 |
-
}
|
10 |
|
11 |
async function checkText(text: string): Promise<Word[]> {
|
12 |
const encodedText = encodeURIComponent(text);
|
@@ -21,8 +16,8 @@ export default function App() {
|
|
21 |
const [context, setContext] = useState("")
|
22 |
const [wordlist, setWordlist] = useState("")
|
23 |
const [showWholePrompt, setShowWholePrompt] = useState(false)
|
24 |
-
const [text, setText] = useState("I just drove to the store to but eggs, but they had some.")
|
25 |
-
|
26 |
const [mode, setMode] = useState<"edit" | "check">("edit")
|
27 |
const [words, setWords] = useState<Word[]>([])
|
28 |
const [isLoading, setIsLoading] = useState(false)
|
|
|
1 |
import React, { useState } from "react"
|
2 |
import { WordChip } from "./WordChip"
|
3 |
import { Spinner } from "./Spinner"
|
4 |
+
import { Word } from "../interfaces"
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
async function checkText(text: string): Promise<Word[]> {
|
7 |
const encodedText = encodeURIComponent(text);
|
|
|
16 |
const [context, setContext] = useState("")
|
17 |
const [wordlist, setWordlist] = useState("")
|
18 |
const [showWholePrompt, setShowWholePrompt] = useState(false)
|
19 |
+
// const [text, setText] = useState("I just drove to the store to but eggs, but they had some.")
|
20 |
+
const [text, setText] = useState("I drove to the stove to but eggs")
|
21 |
const [mode, setMode] = useState<"edit" | "check">("edit")
|
22 |
const [words, setWords] = useState<Word[]>([])
|
23 |
const [isLoading, setIsLoading] = useState(false)
|
frontend/src/components/WordChip.tsx
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import React, { useState, useEffect, useRef } from "react"
|
|
|
2 |
|
3 |
interface WordChipProps {
|
4 |
word: string;
|
5 |
logprob: number;
|
6 |
threshold: number;
|
7 |
-
replacements:
|
8 |
onReplace: (newWord: string) => Promise<void>;
|
9 |
}
|
10 |
|
@@ -60,6 +61,11 @@ export function WordChip({
|
|
60 |
w3 = "";
|
61 |
}
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
return (
|
64 |
<span
|
65 |
title={logprob.toFixed(2)}
|
@@ -86,19 +92,20 @@ export function WordChip({
|
|
86 |
boxShadow: "0 2px 4px rgba(0,0,0,0.1)"
|
87 |
}}
|
88 |
>
|
89 |
-
{
|
90 |
<div
|
91 |
key={index}
|
92 |
-
onClick={() => handleReplacement(option)}
|
93 |
onMouseEnter={() => setSelectedIndex(index)}
|
94 |
style={{
|
95 |
padding: "5px 10px",
|
96 |
cursor: "pointer",
|
97 |
color: "black",
|
98 |
-
backgroundColor: selectedIndex === index ? "#f0f0f0" : "white"
|
|
|
99 |
}}
|
100 |
>
|
101 |
-
{option}
|
102 |
</div>
|
103 |
))}
|
104 |
</div>
|
|
|
1 |
import React, { useState, useEffect, useRef } from "react"
|
2 |
+
import { Replacement } from "../interfaces";
|
3 |
|
4 |
interface WordChipProps {
|
5 |
word: string;
|
6 |
logprob: number;
|
7 |
threshold: number;
|
8 |
+
replacements: Replacement[];
|
9 |
onReplace: (newWord: string) => Promise<void>;
|
10 |
}
|
11 |
|
|
|
61 |
w3 = "";
|
62 |
}
|
63 |
|
64 |
+
// sort replacements by logprob (make sure not to mutate the original array)
|
65 |
+
const sortedReplacements = [...replacements].sort((a, b) => b.logprob - a.logprob)
|
66 |
+
// convert logprobs to probabilities
|
67 |
+
const withProbabilities = sortedReplacements.map(r => ({ ...r, probability: Math.exp(r.logprob)*100 }))
|
68 |
+
|
69 |
return (
|
70 |
<span
|
71 |
title={logprob.toFixed(2)}
|
|
|
92 |
boxShadow: "0 2px 4px rgba(0,0,0,0.1)"
|
93 |
}}
|
94 |
>
|
95 |
+
{withProbabilities.map((option, index) => (
|
96 |
<div
|
97 |
key={index}
|
98 |
+
onClick={() => handleReplacement(option.text)}
|
99 |
onMouseEnter={() => setSelectedIndex(index)}
|
100 |
style={{
|
101 |
padding: "5px 10px",
|
102 |
cursor: "pointer",
|
103 |
color: "black",
|
104 |
+
backgroundColor: selectedIndex === index ? "#f0f0f0" : "white",
|
105 |
+
whiteSpace: "nowrap"
|
106 |
}}
|
107 |
>
|
108 |
+
{option.text} <small style={{ fontSize: "0.7em", color: "#666" }}>{option.probability.toFixed(1)}%</small>
|
109 |
</div>
|
110 |
))}
|
111 |
</div>
|
frontend/src/interfaces.ts
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export interface Replacement {
|
2 |
+
text: string
|
3 |
+
logprob: number
|
4 |
+
}
|
5 |
+
|
6 |
+
export interface Word {
|
7 |
+
text: string
|
8 |
+
logprob: number
|
9 |
+
replacements: Replacement[]
|
10 |
+
}
|
models.py
CHANGED
@@ -9,10 +9,14 @@ class Word:
|
|
9 |
logprob: float
|
10 |
context: list[int]
|
11 |
|
|
|
|
|
|
|
|
|
12 |
class ApiWord(BaseModel):
|
13 |
text: str
|
14 |
logprob: float
|
15 |
-
replacements: list[
|
16 |
|
17 |
class CheckResponse(BaseModel):
|
18 |
text: str
|
|
|
9 |
logprob: float
|
10 |
context: list[int]
|
11 |
|
12 |
+
class Replacement(BaseModel):
|
13 |
+
text: str
|
14 |
+
logprob: float
|
15 |
+
|
16 |
class ApiWord(BaseModel):
|
17 |
text: str
|
18 |
logprob: float
|
19 |
+
replacements: list[Replacement]
|
20 |
|
21 |
class CheckResponse(BaseModel):
|
22 |
text: str
|