|
from pathlib import Path |
|
import os |
|
import gradio as gr |
|
from gradio.components.gallery import GalleryImageType |
|
import datasets |
|
from datasets import load_dataset |
|
from huggingface_hub import HfApi, HfFileSystem, login |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
|
|
login(token=HF_TOKEN, add_to_git_credential=True) |
|
|
|
|
|
def stream_dataset_from_hub(split): |
|
dataset = load_dataset_builder('mcarthuradal/arm-unicef') |
|
data = dataset.as_streaming_dataset(split).iter(200) |
|
yield next(data) |
|
|
|
|
|
stream = stream_dataset_from_hub('train') |
|
|
|
|
|
def get_images(split: str): |
|
|
|
n = 50 |
|
batch = stream['image'][:n] |
|
|
|
return batch |
|
|
|
|
|
iface = gr.Interface(fn=get_images, |
|
inputs='text', |
|
outputs='gallery', |
|
title='Aerial Images Gallery', |
|
description='A gallery of the train and test data to be used without annotations', |
|
analytics_enabled=False, |
|
allow_flagging='never', ) |
|
gr.Gallery(columns=5, |
|
rows=10, |
|
min_width=500, |
|
allow_preview=True, |
|
show_download_button=False, |
|
show_share_button=False) |
|
|
|
iface.launch(debug=True) |
|
|
|
|