Spaces:
Running
Running
Evgeny Zhukov
Origin: https://github.com/ali-vilab/UniAnimate/commit/d7814fa44a0a1154524b92fce0e3133a2604d333
2ba4412
import math | |
import torch | |
import xformers | |
import open_clip | |
import xformers.ops | |
import torch.nn as nn | |
from torch import einsum | |
from einops import rearrange | |
from functools import partial | |
import torch.nn.functional as F | |
import torch.nn.init as init | |
from rotary_embedding_torch import RotaryEmbedding | |
from fairscale.nn.checkpoint import checkpoint_wrapper | |
# from .mha_flash import FlashAttentionBlock | |
from utils.registry_class import MODEL | |
### load all keys started with prefix and replace them with new_prefix | |
def load_Block(state, prefix, new_prefix=None): | |
if new_prefix is None: | |
new_prefix = prefix | |
state_dict = {} | |
state = {key:value for key,value in state.items() if prefix in key} | |
for key,value in state.items(): | |
new_key = key.replace(prefix, new_prefix) | |
state_dict[new_key]=value | |
return state_dict | |
def load_2d_pretrained_state_dict(state,cfg): | |
new_state_dict = {} | |
dim = cfg.unet_dim | |
num_res_blocks = cfg.unet_res_blocks | |
temporal_attention = cfg.temporal_attention | |
temporal_conv = cfg.temporal_conv | |
dim_mult = cfg.unet_dim_mult | |
attn_scales = cfg.unet_attn_scales | |
# params | |
enc_dims = [dim * u for u in [1] + dim_mult] | |
dec_dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |
shortcut_dims = [] | |
scale = 1.0 | |
#embeddings | |
state_dict = load_Block(state,prefix=f'time_embedding') | |
new_state_dict.update(state_dict) | |
state_dict = load_Block(state,prefix=f'y_embedding') | |
new_state_dict.update(state_dict) | |
state_dict = load_Block(state,prefix=f'context_embedding') | |
new_state_dict.update(state_dict) | |
encoder_idx = 0 | |
### init block | |
state_dict = load_Block(state,prefix=f'encoder.{encoder_idx}',new_prefix=f'encoder.{encoder_idx}.0') | |
new_state_dict.update(state_dict) | |
encoder_idx += 1 | |
shortcut_dims.append(dim) | |
for i, (in_dim, out_dim) in enumerate(zip(enc_dims[:-1], enc_dims[1:])): | |
for j in range(num_res_blocks): | |
# residual (+attention) blocks | |
idx = 0 | |
idx_ = 0 | |
# residual (+attention) blocks | |
state_dict = load_Block(state,prefix=f'encoder.{encoder_idx}.{idx}',new_prefix=f'encoder.{encoder_idx}.{idx_}') | |
new_state_dict.update(state_dict) | |
idx += 1 | |
idx_ = 2 | |
if scale in attn_scales: | |
# block.append(AttentionBlock(out_dim, context_dim, num_heads, head_dim)) | |
state_dict = load_Block(state,prefix=f'encoder.{encoder_idx}.{idx}',new_prefix=f'encoder.{encoder_idx}.{idx_}') | |
new_state_dict.update(state_dict) | |
# if temporal_attention: | |
# block.append(TemporalAttentionBlock(out_dim, num_heads, head_dim, rotary_emb = self.rotary_emb)) | |
in_dim = out_dim | |
encoder_idx += 1 | |
shortcut_dims.append(out_dim) | |
# downsample | |
if i != len(dim_mult) - 1 and j == num_res_blocks - 1: | |
# downsample = ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, 0.5, dropout) | |
state_dict = load_Block(state,prefix=f'encoder.{encoder_idx}',new_prefix=f'encoder.{encoder_idx}.0') | |
new_state_dict.update(state_dict) | |
shortcut_dims.append(out_dim) | |
scale /= 2.0 | |
encoder_idx += 1 | |
# middle | |
# self.middle = nn.ModuleList([ | |
# ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, 'none'), | |
# TemporalConvBlock(out_dim), | |
# AttentionBlock(out_dim, context_dim, num_heads, head_dim)]) | |
# if temporal_attention: | |
# self.middle.append(TemporalAttentionBlock(out_dim, num_heads, head_dim, rotary_emb = self.rotary_emb)) | |
# elif temporal_conv: | |
# self.middle.append(TemporalConvBlock(out_dim,dropout=dropout)) | |
# self.middle.append(ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, 'none')) | |
# self.middle.append(TemporalConvBlock(out_dim)) | |
# middle | |
middle_idx = 0 | |
# self.middle = nn.ModuleList([ | |
# ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, 1.0, dropout), | |
# AttentionBlock(out_dim, context_dim, num_heads, head_dim)]) | |
state_dict = load_Block(state,prefix=f'middle.{middle_idx}') | |
new_state_dict.update(state_dict) | |
middle_idx += 2 | |
state_dict = load_Block(state,prefix=f'middle.1',new_prefix=f'middle.{middle_idx}') | |
new_state_dict.update(state_dict) | |
middle_idx += 1 | |
for _ in range(cfg.temporal_attn_times): | |
# self.middle.append(TemporalAttentionBlock(out_dim, num_heads, head_dim, rotary_emb = self.rotary_emb)) | |
middle_idx += 1 | |
# self.middle.append(ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, 1.0, dropout)) | |
state_dict = load_Block(state,prefix=f'middle.2',new_prefix=f'middle.{middle_idx}') | |
new_state_dict.update(state_dict) | |
middle_idx += 2 | |
decoder_idx = 0 | |
for i, (in_dim, out_dim) in enumerate(zip(dec_dims[:-1], dec_dims[1:])): | |
for j in range(num_res_blocks + 1): | |
idx = 0 | |
idx_ = 0 | |
# residual (+attention) blocks | |
# block = nn.ModuleList([ResidualBlock(in_dim + shortcut_dims.pop(), embed_dim, out_dim, use_scale_shift_norm, 1.0, dropout)]) | |
state_dict = load_Block(state,prefix=f'decoder.{decoder_idx}.{idx}',new_prefix=f'decoder.{decoder_idx}.{idx_}') | |
new_state_dict.update(state_dict) | |
idx += 1 | |
idx_ += 2 | |
if scale in attn_scales: | |
# block.append(AttentionBlock(out_dim, context_dim, num_heads, head_dim)) | |
state_dict = load_Block(state,prefix=f'decoder.{decoder_idx}.{idx}',new_prefix=f'decoder.{decoder_idx}.{idx_}') | |
new_state_dict.update(state_dict) | |
idx += 1 | |
idx_ += 1 | |
for _ in range(cfg.temporal_attn_times): | |
# block.append(TemporalAttentionBlock(out_dim, num_heads, head_dim, rotary_emb = self.rotary_emb)) | |
idx_ +=1 | |
in_dim = out_dim | |
# upsample | |
if i != len(dim_mult) - 1 and j == num_res_blocks: | |
# upsample = ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, 2.0, dropout) | |
state_dict = load_Block(state,prefix=f'decoder.{decoder_idx}.{idx}',new_prefix=f'decoder.{decoder_idx}.{idx_}') | |
new_state_dict.update(state_dict) | |
idx += 1 | |
idx_ += 2 | |
scale *= 2.0 | |
# block.append(upsample) | |
# self.decoder.append(block) | |
decoder_idx += 1 | |
# head | |
# self.head = nn.Sequential( | |
# nn.GroupNorm(32, out_dim), | |
# nn.SiLU(), | |
# nn.Conv3d(out_dim, self.out_dim, (1,3,3), padding=(0,1,1))) | |
state_dict = load_Block(state,prefix=f'head') | |
new_state_dict.update(state_dict) | |
return new_state_dict | |
def sinusoidal_embedding(timesteps, dim): | |
# check input | |
half = dim // 2 | |
timesteps = timesteps.float() | |
# compute sinusoidal embedding | |
sinusoid = torch.outer( | |
timesteps, | |
torch.pow(10000, -torch.arange(half).to(timesteps).div(half))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
if dim % 2 != 0: | |
x = torch.cat([x, torch.zeros_like(x[:, :1])], dim=1) | |
return x | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if callable(d) else d | |
def prob_mask_like(shape, prob, device): | |
if prob == 1: | |
return torch.ones(shape, device = device, dtype = torch.bool) | |
elif prob == 0: | |
return torch.zeros(shape, device = device, dtype = torch.bool) | |
else: | |
mask = torch.zeros(shape, device = device).float().uniform_(0, 1) < prob | |
### aviod mask all, which will cause find_unused_parameters error | |
if mask.all(): | |
mask[0]=False | |
return mask | |
class MemoryEfficientCrossAttention(nn.Module): | |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
def __init__(self, query_dim, max_bs=4096, context_dim=None, heads=8, dim_head=64, dropout=0.0): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.max_bs = max_bs | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
self.attention_op: Optional[Any] = None | |
def forward(self, x, context=None, mask=None): | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
# actually compute the attention, what we cannot get enough of | |
if q.shape[0] > self.max_bs: | |
q_list = torch.chunk(q, q.shape[0] // self.max_bs, dim=0) | |
k_list = torch.chunk(k, k.shape[0] // self.max_bs, dim=0) | |
v_list = torch.chunk(v, v.shape[0] // self.max_bs, dim=0) | |
out_list = [] | |
for q_1, k_1, v_1 in zip(q_list, k_list, v_list): | |
out = xformers.ops.memory_efficient_attention( | |
q_1, k_1, v_1, attn_bias=None, op=self.attention_op) | |
out_list.append(out) | |
out = torch.cat(out_list, dim=0) | |
else: | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
return self.to_out(out) | |
class RelativePositionBias(nn.Module): | |
def __init__( | |
self, | |
heads = 8, | |
num_buckets = 32, | |
max_distance = 128 | |
): | |
super().__init__() | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128): | |
ret = 0 | |
n = -relative_position | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).long() | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, n, device): | |
q_pos = torch.arange(n, dtype = torch.long, device = device) | |
k_pos = torch.arange(n, dtype = torch.long, device = device) | |
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') | |
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) | |
values = self.relative_attention_bias(rp_bucket) | |
return rearrange(values, 'i j h -> h i j') | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
NEW: use_linear for more efficiency instead of the 1x1 convs | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True): | |
super().__init__() | |
if exists(context_dim) and not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv2d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv2d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if not isinstance(context, list): | |
context = [context] | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, context=context[i]) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
class SpatialTransformerWithAdapter(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
NEW: use_linear for more efficiency instead of the 1x1 convs | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True, | |
adapter_list=[], adapter_position_list=['', 'parallel', ''], | |
adapter_hidden_dim=None): | |
super().__init__() | |
if exists(context_dim) and not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv2d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlockWithAdapter(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, | |
adapter_list=adapter_list, adapter_position_list=adapter_position_list, | |
adapter_hidden_dim=adapter_hidden_dim) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv2d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if not isinstance(context, list): | |
context = [context] | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, context=context[i]) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
import os | |
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32") | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
# force cast to fp32 to avoid overflowing | |
if _ATTN_PRECISION =="fp32": | |
with torch.autocast(enabled=False, device_type = 'cuda'): | |
q, k = q.float(), k.float() | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
else: | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
del q, k | |
if exists(mask): | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
out = torch.einsum('b i j, b j d -> b i d', sim, v) | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
return self.to_out(out) | |
class Adapter(nn.Module): | |
def __init__(self, in_dim, hidden_dim, condition_dim=None): | |
super().__init__() | |
self.down_linear = nn.Linear(in_dim, hidden_dim) | |
self.up_linear = nn.Linear(hidden_dim, in_dim) | |
self.condition_dim = condition_dim | |
if condition_dim is not None: | |
self.condition_linear = nn.Linear(condition_dim, in_dim) | |
init.zeros_(self.up_linear.weight) | |
init.zeros_(self.up_linear.bias) | |
def forward(self, x, condition=None, condition_lam=1): | |
x_in = x | |
if self.condition_dim is not None and condition is not None: | |
x = x + condition_lam * self.condition_linear(condition) | |
x = self.down_linear(x) | |
x = F.gelu(x) | |
x = self.up_linear(x) | |
x += x_in | |
return x | |
class MemoryEfficientCrossAttention_attemask(nn.Module): | |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
self.attention_op: Optional[Any] = None | |
def forward(self, x, context=None, mask=None): | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
# actually compute the attention, what we cannot get enough of | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=xformers.ops.LowerTriangularMask(), op=self.attention_op) | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
return self.to_out(out) | |
class BasicTransformerBlock_attemask(nn.Module): | |
# ATTENTION_MODES = { | |
# "softmax": CrossAttention, # vanilla attention | |
# "softmax-xformers": MemoryEfficientCrossAttention | |
# } | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, | |
disable_self_attn=False): | |
super().__init__() | |
# attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" | |
# assert attn_mode in self.ATTENTION_MODES | |
# attn_cls = CrossAttention | |
attn_cls = MemoryEfficientCrossAttention_attemask | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, | |
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward_(self, x, context=None): | |
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
def forward(self, x, context=None): | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class BasicTransformerBlockWithAdapter(nn.Module): | |
# ATTENTION_MODES = { | |
# "softmax": CrossAttention, # vanilla attention | |
# "softmax-xformers": MemoryEfficientCrossAttention | |
# } | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False, | |
adapter_list=[], adapter_position_list=['parallel', 'parallel', 'parallel'], adapter_hidden_dim=None, adapter_condition_dim=None | |
): | |
super().__init__() | |
# attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" | |
# assert attn_mode in self.ATTENTION_MODES | |
# attn_cls = CrossAttention | |
attn_cls = MemoryEfficientCrossAttention | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, | |
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
# adapter | |
self.adapter_list = adapter_list | |
self.adapter_position_list = adapter_position_list | |
hidden_dim = dim//2 if not adapter_hidden_dim else adapter_hidden_dim | |
if "self_attention" in adapter_list: | |
self.attn_adapter = Adapter(dim, hidden_dim, adapter_condition_dim) | |
if "cross_attention" in adapter_list: | |
self.cross_attn_adapter = Adapter(dim, hidden_dim, adapter_condition_dim) | |
if "feedforward" in adapter_list: | |
self.ff_adapter = Adapter(dim, hidden_dim, adapter_condition_dim) | |
def forward_(self, x, context=None, adapter_condition=None, adapter_condition_lam=1): | |
return checkpoint(self._forward, (x, context, adapter_condition, adapter_condition_lam), self.parameters(), self.checkpoint) | |
def forward(self, x, context=None, adapter_condition=None, adapter_condition_lam=1): | |
if "self_attention" in self.adapter_list: | |
if self.adapter_position_list[0] == 'parallel': | |
# parallel | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + self.attn_adapter(x, adapter_condition, adapter_condition_lam) | |
elif self.adapter_position_list[0] == 'serial': | |
# serial | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
x = self.attn_adapter(x, adapter_condition, adapter_condition_lam) | |
else: | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
if "cross_attention" in self.adapter_list: | |
if self.adapter_position_list[1] == 'parallel': | |
# parallel | |
x = self.attn2(self.norm2(x), context=context) + self.cross_attn_adapter(x, adapter_condition, adapter_condition_lam) | |
elif self.adapter_position_list[1] == 'serial': | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.cross_attn_adapter(x, adapter_condition, adapter_condition_lam) | |
else: | |
x = self.attn2(self.norm2(x), context=context) + x | |
if "feedforward" in self.adapter_list: | |
if self.adapter_position_list[2] == 'parallel': | |
x = self.ff(self.norm3(x)) + self.ff_adapter(x, adapter_condition, adapter_condition_lam) | |
elif self.adapter_position_list[2] == 'serial': | |
x = self.ff(self.norm3(x)) + x | |
x = self.ff_adapter(x, adapter_condition, adapter_condition_lam) | |
else: | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class BasicTransformerBlock(nn.Module): | |
# ATTENTION_MODES = { | |
# "softmax": CrossAttention, # vanilla attention | |
# "softmax-xformers": MemoryEfficientCrossAttention | |
# } | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, | |
disable_self_attn=False): | |
super().__init__() | |
# attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" | |
# assert attn_mode in self.ATTENTION_MODES | |
# attn_cls = CrossAttention | |
attn_cls = MemoryEfficientCrossAttention | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, | |
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward_(self, x, context=None): | |
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
def forward(self, x, context=None): | |
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=padding) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class UpsampleSR600(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=padding) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
# TODO: to match input_blocks, remove elements of two sides | |
x = x[..., 1:-1, :] | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class ResBlock(nn.Module): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
up=False, | |
down=False, | |
use_temporal_conv=True, | |
use_image_dataset=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.use_temporal_conv = use_temporal_conv | |
self.in_layers = nn.Sequential( | |
nn.GroupNorm(32, channels), | |
nn.SiLU(), | |
nn.Conv2d(channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
nn.GroupNorm(32, self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 3, padding=1 | |
) | |
else: | |
self.skip_connection = nn.Conv2d(channels, self.out_channels, 1) | |
if self.use_temporal_conv: | |
self.temopral_conv = TemporalConvBlock_v2(self.out_channels, self.out_channels, dropout=0.1, use_image_dataset=use_image_dataset) | |
# self.temopral_conv_2 = TemporalConvBlock(self.out_channels, self.out_channels, dropout=0.1, use_image_dataset=use_image_dataset) | |
def forward(self, x, emb, batch_size): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
return self._forward(x, emb, batch_size) | |
def _forward(self, x, emb, batch_size): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
h = self.skip_connection(x) + h | |
if self.use_temporal_conv: | |
h = rearrange(h, '(b f) c h w -> b c f h w', b=batch_size) | |
h = self.temopral_conv(h) | |
# h = self.temopral_conv_2(h) | |
h = rearrange(h, 'b c f h w -> (b f) c h w') | |
return h | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class Resample(nn.Module): | |
def __init__(self, in_dim, out_dim, mode): | |
assert mode in ['none', 'upsample', 'downsample'] | |
super(Resample, self).__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.mode = mode | |
def forward(self, x, reference=None): | |
if self.mode == 'upsample': | |
assert reference is not None | |
x = F.interpolate(x, size=reference.shape[-2:], mode='nearest') | |
elif self.mode == 'downsample': | |
x = F.adaptive_avg_pool2d(x, output_size=tuple(u // 2 for u in x.shape[-2:])) | |
return x | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_dim, embed_dim, out_dim, use_scale_shift_norm=True, | |
mode='none', dropout=0.0): | |
super(ResidualBlock, self).__init__() | |
self.in_dim = in_dim | |
self.embed_dim = embed_dim | |
self.out_dim = out_dim | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.mode = mode | |
# layers | |
self.layer1 = nn.Sequential( | |
nn.GroupNorm(32, in_dim), | |
nn.SiLU(), | |
nn.Conv2d(in_dim, out_dim, 3, padding=1)) | |
self.resample = Resample(in_dim, in_dim, mode) | |
self.embedding = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(embed_dim, out_dim * 2 if use_scale_shift_norm else out_dim)) | |
self.layer2 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv2d(out_dim, out_dim, 3, padding=1)) | |
self.shortcut = nn.Identity() if in_dim == out_dim else nn.Conv2d(in_dim, out_dim, 1) | |
# zero out the last layer params | |
nn.init.zeros_(self.layer2[-1].weight) | |
def forward(self, x, e, reference=None): | |
identity = self.resample(x, reference) | |
x = self.layer1[-1](self.resample(self.layer1[:-1](x), reference)) | |
e = self.embedding(e).unsqueeze(-1).unsqueeze(-1).type(x.dtype) | |
if self.use_scale_shift_norm: | |
scale, shift = e.chunk(2, dim=1) | |
x = self.layer2[0](x) * (1 + scale) + shift | |
x = self.layer2[1:](x) | |
else: | |
x = x + e | |
x = self.layer2(x) | |
x = x + self.shortcut(identity) | |
return x | |
class AttentionBlock(nn.Module): | |
def __init__(self, dim, context_dim=None, num_heads=None, head_dim=None): | |
# consider head_dim first, then num_heads | |
num_heads = dim // head_dim if head_dim else num_heads | |
head_dim = dim // num_heads | |
assert num_heads * head_dim == dim | |
super(AttentionBlock, self).__init__() | |
self.dim = dim | |
self.context_dim = context_dim | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
self.scale = math.pow(head_dim, -0.25) | |
# layers | |
self.norm = nn.GroupNorm(32, dim) | |
self.to_qkv = nn.Conv2d(dim, dim * 3, 1) | |
if context_dim is not None: | |
self.context_kv = nn.Linear(context_dim, dim * 2) | |
self.proj = nn.Conv2d(dim, dim, 1) | |
# zero out the last layer params | |
nn.init.zeros_(self.proj.weight) | |
def forward(self, x, context=None): | |
r"""x: [B, C, H, W]. | |
context: [B, L, C] or None. | |
""" | |
identity = x | |
b, c, h, w, n, d = *x.size(), self.num_heads, self.head_dim | |
# compute query, key, value | |
x = self.norm(x) | |
q, k, v = self.to_qkv(x).view(b, n * 3, d, h * w).chunk(3, dim=1) | |
if context is not None: | |
ck, cv = self.context_kv(context).reshape(b, -1, n * 2, d).permute(0, 2, 3, 1).chunk(2, dim=1) | |
k = torch.cat([ck, k], dim=-1) | |
v = torch.cat([cv, v], dim=-1) | |
# compute attention | |
attn = torch.matmul(q.transpose(-1, -2) * self.scale, k * self.scale) | |
attn = F.softmax(attn, dim=-1) | |
# gather context | |
x = torch.matmul(v, attn.transpose(-1, -2)) | |
x = x.reshape(b, c, h, w) | |
# output | |
x = self.proj(x) | |
return x + identity | |
class TemporalAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
heads = 4, | |
dim_head = 32, | |
rotary_emb = None, | |
use_image_dataset = False, | |
use_sim_mask = False | |
): | |
super().__init__() | |
# consider num_heads first, as pos_bias needs fixed num_heads | |
# heads = dim // dim_head if dim_head else heads | |
dim_head = dim // heads | |
assert heads * dim_head == dim | |
self.use_image_dataset = use_image_dataset | |
self.use_sim_mask = use_sim_mask | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.norm = nn.GroupNorm(32, dim) | |
self.rotary_emb = rotary_emb | |
self.to_qkv = nn.Linear(dim, hidden_dim * 3)#, bias = False) | |
self.to_out = nn.Linear(hidden_dim, dim)#, bias = False) | |
# nn.init.zeros_(self.to_out.weight) | |
# nn.init.zeros_(self.to_out.bias) | |
def forward( | |
self, | |
x, | |
pos_bias = None, | |
focus_present_mask = None, | |
video_mask = None | |
): | |
identity = x | |
n, height, device = x.shape[2], x.shape[-2], x.device | |
x = self.norm(x) | |
x = rearrange(x, 'b c f h w -> b (h w) f c') | |
qkv = self.to_qkv(x).chunk(3, dim = -1) | |
if exists(focus_present_mask) and focus_present_mask.all(): | |
# if all batch samples are focusing on present | |
# it would be equivalent to passing that token's values (v=qkv[-1]) through to the output | |
values = qkv[-1] | |
out = self.to_out(values) | |
out = rearrange(out, 'b (h w) f c -> b c f h w', h = height) | |
return out + identity | |
# split out heads | |
# q, k, v = rearrange_many(qkv, '... n (h d) -> ... h n d', h = self.heads) | |
# shape [b (hw) h n c/h], n=f | |
q= rearrange(qkv[0], '... n (h d) -> ... h n d', h = self.heads) | |
k= rearrange(qkv[1], '... n (h d) -> ... h n d', h = self.heads) | |
v= rearrange(qkv[2], '... n (h d) -> ... h n d', h = self.heads) | |
# scale | |
q = q * self.scale | |
# rotate positions into queries and keys for time attention | |
if exists(self.rotary_emb): | |
q = self.rotary_emb.rotate_queries_or_keys(q) | |
k = self.rotary_emb.rotate_queries_or_keys(k) | |
# similarity | |
# shape [b (hw) h n n], n=f | |
sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k) | |
# relative positional bias | |
if exists(pos_bias): | |
# print(sim.shape,pos_bias.shape) | |
sim = sim + pos_bias | |
if (focus_present_mask is None and video_mask is not None): | |
#video_mask: [B, n] | |
mask = video_mask[:, None, :] * video_mask[:, :, None] # [b,n,n] | |
mask = mask.unsqueeze(1).unsqueeze(1) #[b,1,1,n,n] | |
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) | |
elif exists(focus_present_mask) and not (~focus_present_mask).all(): | |
attend_all_mask = torch.ones((n, n), device = device, dtype = torch.bool) | |
attend_self_mask = torch.eye(n, device = device, dtype = torch.bool) | |
mask = torch.where( | |
rearrange(focus_present_mask, 'b -> b 1 1 1 1'), | |
rearrange(attend_self_mask, 'i j -> 1 1 1 i j'), | |
rearrange(attend_all_mask, 'i j -> 1 1 1 i j'), | |
) | |
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) | |
if self.use_sim_mask: | |
sim_mask = torch.tril(torch.ones((n, n), device = device, dtype = torch.bool), diagonal=0) | |
sim = sim.masked_fill(~sim_mask, -torch.finfo(sim.dtype).max) | |
# numerical stability | |
sim = sim - sim.amax(dim = -1, keepdim = True).detach() | |
attn = sim.softmax(dim = -1) | |
# aggregate values | |
out = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v) | |
out = rearrange(out, '... h n d -> ... n (h d)') | |
out = self.to_out(out) | |
out = rearrange(out, 'b (h w) f c -> b c f h w', h = height) | |
if self.use_image_dataset: | |
out = identity + 0*out | |
else: | |
out = identity + out | |
return out | |
class TemporalTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True, only_self_att=True, multiply_zero=False): | |
super().__init__() | |
self.multiply_zero = multiply_zero | |
self.only_self_att = only_self_att | |
self.use_adaptor = False | |
if self.only_self_att: | |
context_dim = None | |
if not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv1d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
if self.use_adaptor: | |
self.adaptor_in = nn.Linear(frames, frames) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
checkpoint=use_checkpoint) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv1d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
if self.use_adaptor: | |
self.adaptor_out = nn.Linear(frames, frames) | |
self.use_linear = use_linear | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if self.only_self_att: | |
context = None | |
if not isinstance(context, list): | |
context = [context] | |
b, c, f, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = rearrange(x, 'b c f h w -> (b h w) c f').contiguous() | |
x = self.proj_in(x) | |
# [16384, 16, 320] | |
if self.use_linear: | |
x = rearrange(x, '(b f) c h w -> b (h w) f c', f=self.frames).contiguous() | |
x = self.proj_in(x) | |
if self.only_self_att: | |
x = rearrange(x, 'bhw c f -> bhw f c').contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x) | |
x = rearrange(x, '(b hw) f c -> b hw f c', b=b).contiguous() | |
else: | |
x = rearrange(x, '(b hw) c f -> b hw f c', b=b).contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
# context[i] = repeat(context[i], '(b f) l con -> b (f r) l con', r=(h*w)//self.frames, f=self.frames).contiguous() | |
context[i] = rearrange(context[i], '(b f) l con -> b f l con', f=self.frames).contiguous() | |
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package) | |
for j in range(b): | |
context_i_j = repeat(context[i][j], 'f l con -> (f r) l con', r=(h*w)//self.frames, f=self.frames).contiguous() | |
x[j] = block(x[j], context=context_i_j) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) f c -> b f c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
# x = rearrange(x, 'bhw f c -> bhw c f').contiguous() | |
x = rearrange(x, 'b hw f c -> (b hw) c f').contiguous() | |
x = self.proj_out(x) | |
x = rearrange(x, '(b h w) c f -> b c f h w', b=b, h=h, w=w).contiguous() | |
if self.multiply_zero: | |
x = 0.0 * x + x_in | |
else: | |
x = x + x_in | |
return x | |
class TemporalTransformerWithAdapter(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True, only_self_att=True, multiply_zero=False, | |
adapter_list=[], adapter_position_list=['parallel', 'parallel', 'parallel'], | |
adapter_hidden_dim=None, adapter_condition_dim=None): | |
super().__init__() | |
self.multiply_zero = multiply_zero | |
self.only_self_att = only_self_att | |
self.use_adaptor = False | |
if self.only_self_att: | |
context_dim = None | |
if not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv1d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
if self.use_adaptor: | |
self.adaptor_in = nn.Linear(frames, frames) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlockWithAdapter(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
checkpoint=use_checkpoint, adapter_list=adapter_list, adapter_position_list=adapter_position_list, | |
adapter_hidden_dim=adapter_hidden_dim, adapter_condition_dim=adapter_condition_dim) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv1d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
if self.use_adaptor: | |
self.adaptor_out = nn.Linear(frames, frames) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, adapter_condition=None, adapter_condition_lam=1): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if self.only_self_att: | |
context = None | |
if not isinstance(context, list): | |
context = [context] | |
b, c, f, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = rearrange(x, 'b c f h w -> (b h w) c f').contiguous() | |
x = self.proj_in(x) | |
# [16384, 16, 320] | |
if self.use_linear: | |
x = rearrange(x, '(b f) c h w -> b (h w) f c', f=self.frames).contiguous() | |
x = self.proj_in(x) | |
if adapter_condition is not None: | |
b_cond, f_cond, c_cond = adapter_condition.shape | |
adapter_condition = adapter_condition.unsqueeze(1).unsqueeze(1).repeat(1, h, w, 1, 1) | |
adapter_condition = adapter_condition.reshape(b_cond*h*w, f_cond, c_cond) | |
if self.only_self_att: | |
x = rearrange(x, 'bhw c f -> bhw f c').contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x, adapter_condition=adapter_condition, adapter_condition_lam=adapter_condition_lam) | |
x = rearrange(x, '(b hw) f c -> b hw f c', b=b).contiguous() | |
else: | |
x = rearrange(x, '(b hw) c f -> b hw f c', b=b).contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
# context[i] = repeat(context[i], '(b f) l con -> b (f r) l con', r=(h*w)//self.frames, f=self.frames).contiguous() | |
context[i] = rearrange(context[i], '(b f) l con -> b f l con', f=self.frames).contiguous() | |
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package) | |
for j in range(b): | |
context_i_j = repeat(context[i][j], 'f l con -> (f r) l con', r=(h*w)//self.frames, f=self.frames).contiguous() | |
x[j] = block(x[j], context=context_i_j) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) f c -> b f c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
# x = rearrange(x, 'bhw f c -> bhw c f').contiguous() | |
x = rearrange(x, 'b hw f c -> (b hw) c f').contiguous() | |
x = self.proj_out(x) | |
x = rearrange(x, '(b h w) c f -> b c f h w', b=b, h=h, w=w).contiguous() | |
if self.multiply_zero: | |
x = 0.0 * x + x_in | |
else: | |
x = x + x_in | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
project_out = not (heads == 1 and dim_head == dim) | |
self.heads = heads | |
self.scale = dim_head ** -0.5 | |
self.attend = nn.Softmax(dim = -1) | |
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, dim), | |
nn.Dropout(dropout) | |
) if project_out else nn.Identity() | |
def forward(self, x): | |
b, n, _, h = *x.shape, self.heads | |
qkv = self.to_qkv(x).chunk(3, dim = -1) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) | |
dots = torch.einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | |
attn = self.attend(dots) | |
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
return self.to_out(out) | |
class PreNormattention(nn.Module): | |
def __init__(self, dim, fn): | |
super().__init__() | |
self.norm = nn.LayerNorm(dim) | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
return self.fn(self.norm(x), **kwargs) + x | |
class TransformerV2(nn.Module): | |
def __init__(self, heads=8, dim=2048, dim_head_k=256, dim_head_v=256, dropout_atte = 0.05, mlp_dim=2048, dropout_ffn = 0.05, depth=1): | |
super().__init__() | |
self.layers = nn.ModuleList([]) | |
self.depth = depth | |
for _ in range(depth): | |
self.layers.append(nn.ModuleList([ | |
PreNormattention(dim, Attention(dim, heads = heads, dim_head = dim_head_k, dropout = dropout_atte)), | |
FeedForward(dim, mlp_dim, dropout = dropout_ffn), | |
])) | |
def forward(self, x): | |
# if self.depth | |
for attn, ff in self.layers[:1]: | |
x = attn(x) | |
x = ff(x) + x | |
if self.depth > 1: | |
for attn, ff in self.layers[1:]: | |
x = attn(x) | |
x = ff(x) + x | |
return x | |
class TemporalTransformer_attemask(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True, only_self_att=True, multiply_zero=False): | |
super().__init__() | |
self.multiply_zero = multiply_zero | |
self.only_self_att = only_self_att | |
self.use_adaptor = False | |
if self.only_self_att: | |
context_dim = None | |
if not isinstance(context_dim, list): | |
context_dim = [context_dim] | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
if not use_linear: | |
self.proj_in = nn.Conv1d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
if self.use_adaptor: | |
self.adaptor_in = nn.Linear(frames, frames) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock_attemask(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
checkpoint=use_checkpoint) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = zero_module(nn.Conv1d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0)) | |
else: | |
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
if self.use_adaptor: | |
self.adaptor_out = nn.Linear(frames, frames) | |
self.use_linear = use_linear | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if self.only_self_att: | |
context = None | |
if not isinstance(context, list): | |
context = [context] | |
b, c, f, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = rearrange(x, 'b c f h w -> (b h w) c f').contiguous() | |
x = self.proj_in(x) | |
# [16384, 16, 320] | |
if self.use_linear: | |
x = rearrange(x, '(b f) c h w -> b (h w) f c', f=self.frames).contiguous() | |
x = self.proj_in(x) | |
if self.only_self_att: | |
x = rearrange(x, 'bhw c f -> bhw f c').contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
x = block(x) | |
x = rearrange(x, '(b hw) f c -> b hw f c', b=b).contiguous() | |
else: | |
x = rearrange(x, '(b hw) c f -> b hw f c', b=b).contiguous() | |
for i, block in enumerate(self.transformer_blocks): | |
# context[i] = repeat(context[i], '(b f) l con -> b (f r) l con', r=(h*w)//self.frames, f=self.frames).contiguous() | |
context[i] = rearrange(context[i], '(b f) l con -> b f l con', f=self.frames).contiguous() | |
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package) | |
for j in range(b): | |
context_i_j = repeat(context[i][j], 'f l con -> (f r) l con', r=(h*w)//self.frames, f=self.frames).contiguous() | |
x[j] = block(x[j], context=context_i_j) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, 'b (h w) f c -> b f c h w', h=h, w=w).contiguous() | |
if not self.use_linear: | |
# x = rearrange(x, 'bhw f c -> bhw c f').contiguous() | |
x = rearrange(x, 'b hw f c -> (b hw) c f').contiguous() | |
x = self.proj_out(x) | |
x = rearrange(x, '(b h w) c f -> b c f h w', b=b, h=h, w=w).contiguous() | |
if self.multiply_zero: | |
x = 0.0 * x + x_in | |
else: | |
x = x + x_in | |
return x | |
class TemporalAttentionMultiBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
heads=4, | |
dim_head=32, | |
rotary_emb=None, | |
use_image_dataset=False, | |
use_sim_mask=False, | |
temporal_attn_times=1, | |
): | |
super().__init__() | |
self.att_layers = nn.ModuleList( | |
[TemporalAttentionBlock(dim, heads, dim_head, rotary_emb, use_image_dataset, use_sim_mask) | |
for _ in range(temporal_attn_times)] | |
) | |
def forward( | |
self, | |
x, | |
pos_bias = None, | |
focus_present_mask = None, | |
video_mask = None | |
): | |
for layer in self.att_layers: | |
x = layer(x, pos_bias, focus_present_mask, video_mask) | |
return x | |
class InitTemporalConvBlock(nn.Module): | |
def __init__(self, in_dim, out_dim=None, dropout=0.0,use_image_dataset=False): | |
super(InitTemporalConvBlock, self).__init__() | |
if out_dim is None: | |
out_dim = in_dim#int(1.5*in_dim) | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.use_image_dataset = use_image_dataset | |
# conv layers | |
self.conv = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding = (1, 0, 0))) | |
# zero out the last layer params,so the conv block is identity | |
# nn.init.zeros_(self.conv1[-1].weight) | |
# nn.init.zeros_(self.conv1[-1].bias) | |
nn.init.zeros_(self.conv[-1].weight) | |
nn.init.zeros_(self.conv[-1].bias) | |
def forward(self, x): | |
identity = x | |
x = self.conv(x) | |
if self.use_image_dataset: | |
x = identity + 0*x | |
else: | |
x = identity + x | |
return x | |
class TemporalConvBlock(nn.Module): | |
def __init__(self, in_dim, out_dim=None, dropout=0.0, use_image_dataset= False): | |
super(TemporalConvBlock, self).__init__() | |
if out_dim is None: | |
out_dim = in_dim#int(1.5*in_dim) | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.use_image_dataset = use_image_dataset | |
# conv layers | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(32, in_dim), | |
nn.SiLU(), | |
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding = (1, 0, 0))) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding = (1, 0, 0))) | |
# zero out the last layer params,so the conv block is identity | |
# nn.init.zeros_(self.conv1[-1].weight) | |
# nn.init.zeros_(self.conv1[-1].bias) | |
nn.init.zeros_(self.conv2[-1].weight) | |
nn.init.zeros_(self.conv2[-1].bias) | |
def forward(self, x): | |
identity = x | |
x = self.conv1(x) | |
x = self.conv2(x) | |
if self.use_image_dataset: | |
x = identity + 0*x | |
else: | |
x = identity + x | |
return x | |
class TemporalConvBlock_v2(nn.Module): | |
def __init__(self, in_dim, out_dim=None, dropout=0.0, use_image_dataset=False): | |
super(TemporalConvBlock_v2, self).__init__() | |
if out_dim is None: | |
out_dim = in_dim # int(1.5*in_dim) | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.use_image_dataset = use_image_dataset | |
# conv layers | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(32, in_dim), | |
nn.SiLU(), | |
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding = (1, 0, 0))) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding = (1, 0, 0))) | |
self.conv3 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding = (1, 0, 0))) | |
self.conv4 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding = (1, 0, 0))) | |
# zero out the last layer params,so the conv block is identity | |
nn.init.zeros_(self.conv4[-1].weight) | |
nn.init.zeros_(self.conv4[-1].bias) | |
def forward(self, x): | |
identity = x | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.conv3(x) | |
x = self.conv4(x) | |
if self.use_image_dataset: | |
x = identity + 0.0 * x | |
else: | |
x = identity + x | |
return x | |
class DropPath(nn.Module): | |
r"""DropPath but without rescaling and supports optional all-zero and/or all-keep. | |
""" | |
def __init__(self, p): | |
super(DropPath, self).__init__() | |
self.p = p | |
def forward(self, *args, zero=None, keep=None): | |
if not self.training: | |
return args[0] if len(args) == 1 else args | |
# params | |
x = args[0] | |
b = x.size(0) | |
n = (torch.rand(b) < self.p).sum() | |
# non-zero and non-keep mask | |
mask = x.new_ones(b, dtype=torch.bool) | |
if keep is not None: | |
mask[keep] = False | |
if zero is not None: | |
mask[zero] = False | |
# drop-path index | |
index = torch.where(mask)[0] | |
index = index[torch.randperm(len(index))[:n]] | |
if zero is not None: | |
index = torch.cat([index, torch.where(zero)[0]], dim=0) | |
# drop-path multiplier | |
multiplier = x.new_ones(b) | |
multiplier[index] = 0.0 | |
output = tuple(u * self.broadcast(multiplier, u) for u in args) | |
return output[0] if len(args) == 1 else output | |
def broadcast(self, src, dst): | |
assert src.size(0) == dst.size(0) | |
shape = (dst.size(0), ) + (1, ) * (dst.ndim - 1) | |
return src.view(shape) | |