Spaces:
Running
Running
Evgeny Zhukov
Origin: https://github.com/ali-vilab/UniAnimate/commit/d7814fa44a0a1154524b92fce0e3133a2604d333
2ba4412
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import open_clip | |
from functools import partial | |
from utils.registry_class import EMBEDMANAGER | |
DEFAULT_PLACEHOLDER_TOKEN = ["*"] | |
PROGRESSIVE_SCALE = 2000 | |
per_img_token_list = [ | |
'讗', '讘', '讙', '讚', '讛', '讜', '讝', '讞', '讟', '讬', '讻', '诇', '诪', '谞', '住', '注', '驻', '爪', '拽', '专', '砖', '转', | |
] | |
def get_clip_token_for_string(string): | |
tokens = open_clip.tokenize(string) | |
return tokens[0, 1] | |
def get_embedding_for_clip_token(embedder, token): | |
return embedder(token.unsqueeze(0))[0] | |
class EmbeddingManager(nn.Module): | |
def __init__( | |
self, | |
embedder, | |
placeholder_strings=None, | |
initializer_words=None, | |
per_image_tokens=False, | |
num_vectors_per_token=1, | |
progressive_words=False, | |
temporal_prompt_length=1, | |
token_dim=1024, | |
**kwargs | |
): | |
super().__init__() | |
self.string_to_token_dict = {} | |
self.string_to_param_dict = nn.ParameterDict() | |
self.initial_embeddings = nn.ParameterDict() # These should not be optimized | |
self.progressive_words = progressive_words | |
self.progressive_counter = 0 | |
self.max_vectors_per_token = num_vectors_per_token | |
get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.model.token_embedding.cpu()) | |
if per_image_tokens: | |
placeholder_strings.extend(per_img_token_list) | |
for idx, placeholder_string in enumerate(placeholder_strings): | |
token = get_clip_token_for_string(placeholder_string) | |
if initializer_words and idx < len(initializer_words): | |
init_word_token = get_clip_token_for_string(initializer_words[idx]) | |
with torch.no_grad(): | |
init_word_embedding = get_embedding_for_tkn(init_word_token) | |
token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True) | |
self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False) | |
else: | |
token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True)) | |
self.string_to_token_dict[placeholder_string] = token | |
self.string_to_param_dict[placeholder_string] = token_params | |
def forward( | |
self, | |
tokenized_text, | |
embedded_text, | |
): | |
b, n, device = *tokenized_text.shape, tokenized_text.device | |
for placeholder_string, placeholder_token in self.string_to_token_dict.items(): | |
placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device) | |
if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement | |
placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device)) | |
embedded_text[placeholder_idx] = placeholder_embedding | |
else: # otherwise, need to insert and keep track of changing indices | |
if self.progressive_words: | |
self.progressive_counter += 1 | |
max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE | |
else: | |
max_step_tokens = self.max_vectors_per_token | |
num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens) | |
placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device)) | |
if placeholder_rows.nelement() == 0: | |
continue | |
sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True) | |
sorted_rows = placeholder_rows[sort_idx] | |
for idx in range(len(sorted_rows)): | |
row = sorted_rows[idx] | |
col = sorted_cols[idx] | |
new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n] | |
new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n] | |
embedded_text[row] = new_embed_row | |
tokenized_text[row] = new_token_row | |
return embedded_text | |
def forward_with_text_img( | |
self, | |
tokenized_text, | |
embedded_text, | |
embedded_img, | |
): | |
device = tokenized_text.device | |
for placeholder_string, placeholder_token in self.string_to_token_dict.items(): | |
placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device) | |
placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device)) | |
embedded_text[placeholder_idx] = embedded_text[placeholder_idx] + embedded_img + placeholder_embedding | |
return embedded_text | |
def forward_with_text( | |
self, | |
tokenized_text, | |
embedded_text | |
): | |
device = tokenized_text.device | |
for placeholder_string, placeholder_token in self.string_to_token_dict.items(): | |
placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device) | |
placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device)) | |
embedded_text[placeholder_idx] = embedded_text[placeholder_idx] + placeholder_embedding | |
return embedded_text | |
def save(self, ckpt_path): | |
torch.save({"string_to_token": self.string_to_token_dict, | |
"string_to_param": self.string_to_param_dict}, ckpt_path) | |
def load(self, ckpt_path): | |
ckpt = torch.load(ckpt_path, map_location='cpu') | |
string_to_token = ckpt["string_to_token"] | |
string_to_param = ckpt["string_to_param"] | |
for string, token in string_to_token.items(): | |
self.string_to_token_dict[string] = token | |
for string, param in string_to_param.items(): | |
self.string_to_param_dict[string] = param | |
def get_embedding_norms_squared(self): | |
all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim | |
param_norm_squared = (all_params * all_params).sum(axis=-1) # num_placeholders | |
return param_norm_squared | |
def embedding_parameters(self): | |
return self.string_to_param_dict.parameters() | |
def embedding_to_coarse_loss(self): | |
loss = 0. | |
num_embeddings = len(self.initial_embeddings) | |
for key in self.initial_embeddings: | |
optimized = self.string_to_param_dict[key] | |
coarse = self.initial_embeddings[key].clone().to(optimized.device) | |
loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings | |
return loss |