Evgeny Zhukov
Origin: https://github.com/ali-vilab/UniAnimate/commit/d7814fa44a0a1154524b92fce0e3133a2604d333
2ba4412
import torch
import math
from utils.registry_class import DIFFUSION
from .schedules import beta_schedule, sigma_schedule
from .losses import kl_divergence, discretized_gaussian_log_likelihood
# from .dpm_solver import NoiseScheduleVP, model_wrapper_guided_diffusion, model_wrapper, DPM_Solver
from typing import Callable, List, Optional
import numpy as np
def _i(tensor, t, x):
r"""Index tensor using t and format the output according to x.
"""
if tensor.device != x.device:
tensor = tensor.to(x.device)
shape = (x.size(0), ) + (1, ) * (x.ndim - 1)
return tensor[t].view(shape).to(x)
@DIFFUSION.register_class()
class DiffusionDDIMSR(object):
def __init__(self, reverse_diffusion, forward_diffusion, **kwargs):
from .diffusion_gauss import GaussianDiffusion
self.reverse_diffusion = GaussianDiffusion(sigmas=sigma_schedule(reverse_diffusion.schedule, **reverse_diffusion.schedule_param),
prediction_type=reverse_diffusion.mean_type)
self.forward_diffusion = GaussianDiffusion(sigmas=sigma_schedule(forward_diffusion.schedule, **forward_diffusion.schedule_param),
prediction_type=forward_diffusion.mean_type)
@DIFFUSION.register_class()
class DiffusionDPM(object):
def __init__(self, forward_diffusion, **kwargs):
from .diffusion_gauss import GaussianDiffusion
self.forward_diffusion = GaussianDiffusion(sigmas=sigma_schedule(forward_diffusion.schedule, **forward_diffusion.schedule_param),
prediction_type=forward_diffusion.mean_type)
@DIFFUSION.register_class()
class DiffusionDDIM(object):
def __init__(self,
schedule='linear_sd',
schedule_param={},
mean_type='eps',
var_type='learned_range',
loss_type='mse',
epsilon = 1e-12,
rescale_timesteps=False,
noise_strength=0.0,
**kwargs):
assert mean_type in ['x0', 'x_{t-1}', 'eps', 'v']
assert var_type in ['learned', 'learned_range', 'fixed_large', 'fixed_small']
assert loss_type in ['mse', 'rescaled_mse', 'kl', 'rescaled_kl', 'l1', 'rescaled_l1','charbonnier']
betas = beta_schedule(schedule, **schedule_param)
assert min(betas) > 0 and max(betas) <= 1
if not isinstance(betas, torch.DoubleTensor):
betas = torch.tensor(betas, dtype=torch.float64)
self.betas = betas
self.num_timesteps = len(betas)
self.mean_type = mean_type # eps
self.var_type = var_type # 'fixed_small'
self.loss_type = loss_type # mse
self.epsilon = epsilon # 1e-12
self.rescale_timesteps = rescale_timesteps # False
self.noise_strength = noise_strength # 0.0
# alphas
alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(alphas, dim=0)
self.alphas_cumprod_prev = torch.cat([alphas.new_ones([1]), self.alphas_cumprod[:-1]])
self.alphas_cumprod_next = torch.cat([self.alphas_cumprod[1:], alphas.new_zeros([1])])
# q(x_t | x_{t-1})
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = torch.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod - 1)
# q(x_{t-1} | x_t, x_0)
self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(1e-20))
self.posterior_mean_coef1 = betas * torch.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - self.alphas_cumprod)
def sample_loss(self, x0, noise=None):
if noise is None:
noise = torch.randn_like(x0)
if self.noise_strength > 0:
b, c, f, _, _= x0.shape
offset_noise = torch.randn(b, c, f, 1, 1, device=x0.device)
noise = noise + self.noise_strength * offset_noise
return noise
def q_sample(self, x0, t, noise=None):
r"""Sample from q(x_t | x_0).
"""
# noise = torch.randn_like(x0) if noise is None else noise
noise = self.sample_loss(x0, noise)
return _i(self.sqrt_alphas_cumprod, t, x0) * x0 + \
_i(self.sqrt_one_minus_alphas_cumprod, t, x0) * noise
def q_mean_variance(self, x0, t):
r"""Distribution of q(x_t | x_0).
"""
mu = _i(self.sqrt_alphas_cumprod, t, x0) * x0
var = _i(1.0 - self.alphas_cumprod, t, x0)
log_var = _i(self.log_one_minus_alphas_cumprod, t, x0)
return mu, var, log_var
def q_posterior_mean_variance(self, x0, xt, t):
r"""Distribution of q(x_{t-1} | x_t, x_0).
"""
mu = _i(self.posterior_mean_coef1, t, xt) * x0 + _i(self.posterior_mean_coef2, t, xt) * xt
var = _i(self.posterior_variance, t, xt)
log_var = _i(self.posterior_log_variance_clipped, t, xt)
return mu, var, log_var
@torch.no_grad()
def p_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None):
r"""Sample from p(x_{t-1} | x_t).
- condition_fn: for classifier-based guidance (guided-diffusion).
- guide_scale: for classifier-free guidance (glide/dalle-2).
"""
# predict distribution of p(x_{t-1} | x_t)
mu, var, log_var, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
# random sample (with optional conditional function)
noise = torch.randn_like(xt)
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1))) # no noise when t == 0
if condition_fn is not None:
grad = condition_fn(xt, self._scale_timesteps(t), **model_kwargs)
mu = mu.float() + var * grad.float()
xt_1 = mu + mask * torch.exp(0.5 * log_var) * noise
return xt_1, x0
@torch.no_grad()
def p_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None):
r"""Sample from p(x_{t-1} | x_t) p(x_{t-2} | x_{t-1}) ... p(x_0 | x_1).
"""
# prepare input
b = noise.size(0)
xt = noise
# diffusion process
for step in torch.arange(self.num_timesteps).flip(0):
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.p_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale)
return xt
def p_mean_variance(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None):
r"""Distribution of p(x_{t-1} | x_t).
"""
# predict distribution
if guide_scale is None:
out = model(xt, self._scale_timesteps(t), **model_kwargs)
else:
# classifier-free guidance
# (model_kwargs[0]: conditional kwargs; model_kwargs[1]: non-conditional kwargs)
assert isinstance(model_kwargs, list) and len(model_kwargs) == 2
y_out = model(xt, self._scale_timesteps(t), **model_kwargs[0])
u_out = model(xt, self._scale_timesteps(t), **model_kwargs[1])
dim = y_out.size(1) if self.var_type.startswith('fixed') else y_out.size(1) // 2
out = torch.cat([
u_out[:, :dim] + guide_scale * (y_out[:, :dim] - u_out[:, :dim]),
y_out[:, dim:]], dim=1) # guide_scale=9.0
# compute variance
if self.var_type == 'learned':
out, log_var = out.chunk(2, dim=1)
var = torch.exp(log_var)
elif self.var_type == 'learned_range':
out, fraction = out.chunk(2, dim=1)
min_log_var = _i(self.posterior_log_variance_clipped, t, xt)
max_log_var = _i(torch.log(self.betas), t, xt)
fraction = (fraction + 1) / 2.0
log_var = fraction * max_log_var + (1 - fraction) * min_log_var
var = torch.exp(log_var)
elif self.var_type == 'fixed_large':
var = _i(torch.cat([self.posterior_variance[1:2], self.betas[1:]]), t, xt)
log_var = torch.log(var)
elif self.var_type == 'fixed_small':
var = _i(self.posterior_variance, t, xt)
log_var = _i(self.posterior_log_variance_clipped, t, xt)
# compute mean and x0
if self.mean_type == 'x_{t-1}':
mu = out # x_{t-1}
x0 = _i(1.0 / self.posterior_mean_coef1, t, xt) * mu - \
_i(self.posterior_mean_coef2 / self.posterior_mean_coef1, t, xt) * xt
elif self.mean_type == 'x0':
x0 = out
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
elif self.mean_type == 'eps':
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * out
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
elif self.mean_type == 'v':
x0 = _i(self.sqrt_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_one_minus_alphas_cumprod, t, xt) * out
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
# restrict the range of x0
if percentile is not None:
assert percentile > 0 and percentile <= 1 # e.g., 0.995
s = torch.quantile(x0.flatten(1).abs(), percentile, dim=1).clamp_(1.0).view(-1, 1, 1, 1)
x0 = torch.min(s, torch.max(-s, x0)) / s
elif clamp is not None:
x0 = x0.clamp(-clamp, clamp)
return mu, var, log_var, x0
@torch.no_grad()
def ddim_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, ddim_timesteps=20, eta=0.0):
r"""Sample from p(x_{t-1} | x_t) using DDIM.
- condition_fn: for classifier-based guidance (guided-diffusion).
- guide_scale: for classifier-free guidance (glide/dalle-2).
"""
stride = self.num_timesteps // ddim_timesteps
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
if condition_fn is not None:
# x0 -> eps
alpha = _i(self.alphas_cumprod, t, xt)
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
eps = eps - (1 - alpha).sqrt() * condition_fn(xt, self._scale_timesteps(t), **model_kwargs)
# eps -> x0
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
# derive variables
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
alphas = _i(self.alphas_cumprod, t, xt)
alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt)
sigmas = eta * torch.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
# random sample
noise = torch.randn_like(xt)
direction = torch.sqrt(1 - alphas_prev - sigmas ** 2) * eps
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))
xt_1 = torch.sqrt(alphas_prev) * x0 + direction + mask * sigmas * noise
return xt_1, x0
@torch.no_grad()
def ddim_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, ddim_timesteps=20, eta=0.0):
# prepare input
b = noise.size(0)
xt = noise
# diffusion process (TODO: clamp is inaccurate! Consider replacing the stride by explicit prev/next steps)
steps = (1 + torch.arange(0, self.num_timesteps, self.num_timesteps // ddim_timesteps)).clamp(0, self.num_timesteps - 1).flip(0)
from tqdm import tqdm
for step in tqdm(steps):
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.ddim_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale, ddim_timesteps, eta)
# from ipdb import set_trace; set_trace()
return xt
@torch.no_grad()
def ddim_reverse_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None, ddim_timesteps=20):
r"""Sample from p(x_{t+1} | x_t) using DDIM reverse ODE (deterministic).
"""
stride = self.num_timesteps // ddim_timesteps
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
# derive variables
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
alphas_next = _i(
torch.cat([self.alphas_cumprod, self.alphas_cumprod.new_zeros([1])]),
(t + stride).clamp(0, self.num_timesteps), xt)
# reverse sample
mu = torch.sqrt(alphas_next) * x0 + torch.sqrt(1 - alphas_next) * eps
return mu, x0
@torch.no_grad()
def ddim_reverse_sample_loop(self, x0, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None, ddim_timesteps=20):
# prepare input
b = x0.size(0)
xt = x0
# reconstruction steps
steps = torch.arange(0, self.num_timesteps, self.num_timesteps // ddim_timesteps)
for step in steps:
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.ddim_reverse_sample(xt, t, model, model_kwargs, clamp, percentile, guide_scale, ddim_timesteps)
return xt
@torch.no_grad()
def plms_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, plms_timesteps=20):
r"""Sample from p(x_{t-1} | x_t) using PLMS.
- condition_fn: for classifier-based guidance (guided-diffusion).
- guide_scale: for classifier-free guidance (glide/dalle-2).
"""
stride = self.num_timesteps // plms_timesteps
# function for compute eps
def compute_eps(xt, t):
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
# condition
if condition_fn is not None:
# x0 -> eps
alpha = _i(self.alphas_cumprod, t, xt)
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
eps = eps - (1 - alpha).sqrt() * condition_fn(xt, self._scale_timesteps(t), **model_kwargs)
# eps -> x0
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
# derive eps
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
return eps
# function for compute x_0 and x_{t-1}
def compute_x0(eps, t):
# eps -> x0
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
# deterministic sample
alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt)
direction = torch.sqrt(1 - alphas_prev) * eps
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))
xt_1 = torch.sqrt(alphas_prev) * x0 + direction
return xt_1, x0
# PLMS sample
eps = compute_eps(xt, t)
if len(eps_cache) == 0:
# 2nd order pseudo improved Euler
xt_1, x0 = compute_x0(eps, t)
eps_next = compute_eps(xt_1, (t - stride).clamp(0))
eps_prime = (eps + eps_next) / 2.0
elif len(eps_cache) == 1:
# 2nd order pseudo linear multistep (Adams-Bashforth)
eps_prime = (3 * eps - eps_cache[-1]) / 2.0
elif len(eps_cache) == 2:
# 3nd order pseudo linear multistep (Adams-Bashforth)
eps_prime = (23 * eps - 16 * eps_cache[-1] + 5 * eps_cache[-2]) / 12.0
elif len(eps_cache) >= 3:
# 4nd order pseudo linear multistep (Adams-Bashforth)
eps_prime = (55 * eps - 59 * eps_cache[-1] + 37 * eps_cache[-2] - 9 * eps_cache[-3]) / 24.0
xt_1, x0 = compute_x0(eps_prime, t)
return xt_1, x0, eps
@torch.no_grad()
def plms_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, plms_timesteps=20):
# prepare input
b = noise.size(0)
xt = noise
# diffusion process
steps = (1 + torch.arange(0, self.num_timesteps, self.num_timesteps // plms_timesteps)).clamp(0, self.num_timesteps - 1).flip(0)
eps_cache = []
for step in steps:
# PLMS sampling step
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _, eps = self.plms_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale, plms_timesteps, eps_cache)
# update eps cache
eps_cache.append(eps)
if len(eps_cache) >= 4:
eps_cache.pop(0)
return xt
def loss(self, x0, t, model, model_kwargs={}, noise=None, weight = None, use_div_loss= False, loss_mask=None):
# noise = torch.randn_like(x0) if noise is None else noise # [80, 4, 8, 32, 32]
noise = self.sample_loss(x0, noise)
xt = self.q_sample(x0, t, noise=noise)
# compute loss
if self.loss_type in ['kl', 'rescaled_kl']:
loss, _ = self.variational_lower_bound(x0, xt, t, model, model_kwargs)
if self.loss_type == 'rescaled_kl':
loss = loss * self.num_timesteps
elif self.loss_type in ['mse', 'rescaled_mse', 'l1', 'rescaled_l1']: # self.loss_type: mse
out = model(xt, self._scale_timesteps(t), **model_kwargs)
# VLB for variation
loss_vlb = 0.0
if self.var_type in ['learned', 'learned_range']: # self.var_type: 'fixed_small'
out, var = out.chunk(2, dim=1)
frozen = torch.cat([out.detach(), var], dim=1) # learn var without affecting the prediction of mean
loss_vlb, _ = self.variational_lower_bound(x0, xt, t, model=lambda *args, **kwargs: frozen)
if self.loss_type.startswith('rescaled_'):
loss_vlb = loss_vlb * self.num_timesteps / 1000.0
# MSE/L1 for x0/eps
# target = {'eps': noise, 'x0': x0, 'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0]}[self.mean_type]
target = {
'eps': noise,
'x0': x0,
'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0],
'v':_i(self.sqrt_alphas_cumprod, t, xt) * noise - _i(self.sqrt_one_minus_alphas_cumprod, t, xt) * x0}[self.mean_type]
if loss_mask is not None:
loss_mask = loss_mask[:, :, 0, ...].unsqueeze(2) # just use one channel (all channels are same)
loss_mask = loss_mask.permute(0, 2, 1, 3, 4) # b,c,f,h,w
# use masked diffusion
loss = (out * loss_mask - target * loss_mask).pow(1 if self.loss_type.endswith('l1') else 2).abs().flatten(1).mean(dim=1)
else:
loss = (out - target).pow(1 if self.loss_type.endswith('l1') else 2).abs().flatten(1).mean(dim=1)
if weight is not None:
loss = loss*weight
# div loss
if use_div_loss and self.mean_type == 'eps' and x0.shape[2]>1:
# derive x0
x0_ = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * out
# # derive xt_1, set eta=0 as ddim
# alphas_prev = _i(self.alphas_cumprod, (t - 1).clamp(0), xt)
# direction = torch.sqrt(1 - alphas_prev) * out
# xt_1 = torch.sqrt(alphas_prev) * x0_ + direction
# ncfhw, std on f
div_loss = 0.001/(x0_.std(dim=2).flatten(1).mean(dim=1)+1e-4)
# print(div_loss,loss)
loss = loss+div_loss
# total loss
loss = loss + loss_vlb
elif self.loss_type in ['charbonnier']:
out = model(xt, self._scale_timesteps(t), **model_kwargs)
# VLB for variation
loss_vlb = 0.0
if self.var_type in ['learned', 'learned_range']:
out, var = out.chunk(2, dim=1)
frozen = torch.cat([out.detach(), var], dim=1) # learn var without affecting the prediction of mean
loss_vlb, _ = self.variational_lower_bound(x0, xt, t, model=lambda *args, **kwargs: frozen)
if self.loss_type.startswith('rescaled_'):
loss_vlb = loss_vlb * self.num_timesteps / 1000.0
# MSE/L1 for x0/eps
target = {'eps': noise, 'x0': x0, 'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0]}[self.mean_type]
loss = torch.sqrt((out - target)**2 + self.epsilon)
if weight is not None:
loss = loss*weight
loss = loss.flatten(1).mean(dim=1)
# total loss
loss = loss + loss_vlb
return loss
def variational_lower_bound(self, x0, xt, t, model, model_kwargs={}, clamp=None, percentile=None):
# compute groundtruth and predicted distributions
mu1, _, log_var1 = self.q_posterior_mean_variance(x0, xt, t)
mu2, _, log_var2, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile)
# compute KL loss
kl = kl_divergence(mu1, log_var1, mu2, log_var2)
kl = kl.flatten(1).mean(dim=1) / math.log(2.0)
# compute discretized NLL loss (for p(x0 | x1) only)
nll = -discretized_gaussian_log_likelihood(x0, mean=mu2, log_scale=0.5 * log_var2)
nll = nll.flatten(1).mean(dim=1) / math.log(2.0)
# NLL for p(x0 | x1) and KL otherwise
vlb = torch.where(t == 0, nll, kl)
return vlb, x0
@torch.no_grad()
def variational_lower_bound_loop(self, x0, model, model_kwargs={}, clamp=None, percentile=None):
r"""Compute the entire variational lower bound, measured in bits-per-dim.
"""
# prepare input and output
b = x0.size(0)
metrics = {'vlb': [], 'mse': [], 'x0_mse': []}
# loop
for step in torch.arange(self.num_timesteps).flip(0):
# compute VLB
t = torch.full((b, ), step, dtype=torch.long, device=x0.device)
# noise = torch.randn_like(x0)
noise = self.sample_loss(x0)
xt = self.q_sample(x0, t, noise)
vlb, pred_x0 = self.variational_lower_bound(x0, xt, t, model, model_kwargs, clamp, percentile)
# predict eps from x0
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
# collect metrics
metrics['vlb'].append(vlb)
metrics['x0_mse'].append((pred_x0 - x0).square().flatten(1).mean(dim=1))
metrics['mse'].append((eps - noise).square().flatten(1).mean(dim=1))
metrics = {k: torch.stack(v, dim=1) for k, v in metrics.items()}
# compute the prior KL term for VLB, measured in bits-per-dim
mu, _, log_var = self.q_mean_variance(x0, t)
kl_prior = kl_divergence(mu, log_var, torch.zeros_like(mu), torch.zeros_like(log_var))
kl_prior = kl_prior.flatten(1).mean(dim=1) / math.log(2.0)
# update metrics
metrics['prior_bits_per_dim'] = kl_prior
metrics['total_bits_per_dim'] = metrics['vlb'].sum(dim=1) + kl_prior
return metrics
def _scale_timesteps(self, t):
if self.rescale_timesteps:
return t.float() * 1000.0 / self.num_timesteps
return t
#return t.float()
@DIFFUSION.register_class()
class DiffusionDDIMLong(object):
def __init__(self,
schedule='linear_sd',
schedule_param={},
mean_type='eps',
var_type='learned_range',
loss_type='mse',
epsilon = 1e-12,
rescale_timesteps=False,
noise_strength=0.0,
**kwargs):
assert mean_type in ['x0', 'x_{t-1}', 'eps', 'v']
assert var_type in ['learned', 'learned_range', 'fixed_large', 'fixed_small']
assert loss_type in ['mse', 'rescaled_mse', 'kl', 'rescaled_kl', 'l1', 'rescaled_l1','charbonnier']
betas = beta_schedule(schedule, **schedule_param)
assert min(betas) > 0 and max(betas) <= 1
if not isinstance(betas, torch.DoubleTensor):
betas = torch.tensor(betas, dtype=torch.float64)
self.betas = betas
self.num_timesteps = len(betas)
self.mean_type = mean_type # v
self.var_type = var_type # 'fixed_small'
self.loss_type = loss_type # mse
self.epsilon = epsilon # 1e-12
self.rescale_timesteps = rescale_timesteps # False
self.noise_strength = noise_strength
# alphas
alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(alphas, dim=0)
self.alphas_cumprod_prev = torch.cat([alphas.new_ones([1]), self.alphas_cumprod[:-1]])
self.alphas_cumprod_next = torch.cat([self.alphas_cumprod[1:], alphas.new_zeros([1])])
# q(x_t | x_{t-1})
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = torch.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod - 1)
# q(x_{t-1} | x_t, x_0)
self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(1e-20))
self.posterior_mean_coef1 = betas * torch.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - self.alphas_cumprod)
def sample_loss(self, x0, noise=None):
if noise is None:
noise = torch.randn_like(x0)
if self.noise_strength > 0:
b, c, f, _, _= x0.shape
offset_noise = torch.randn(b, c, f, 1, 1, device=x0.device)
noise = noise + self.noise_strength * offset_noise
return noise
def q_sample(self, x0, t, noise=None):
r"""Sample from q(x_t | x_0).
"""
# noise = torch.randn_like(x0) if noise is None else noise
noise = self.sample_loss(x0, noise)
return _i(self.sqrt_alphas_cumprod, t, x0) * x0 + \
_i(self.sqrt_one_minus_alphas_cumprod, t, x0) * noise
def q_mean_variance(self, x0, t):
r"""Distribution of q(x_t | x_0).
"""
mu = _i(self.sqrt_alphas_cumprod, t, x0) * x0
var = _i(1.0 - self.alphas_cumprod, t, x0)
log_var = _i(self.log_one_minus_alphas_cumprod, t, x0)
return mu, var, log_var
def q_posterior_mean_variance(self, x0, xt, t):
r"""Distribution of q(x_{t-1} | x_t, x_0).
"""
mu = _i(self.posterior_mean_coef1, t, xt) * x0 + _i(self.posterior_mean_coef2, t, xt) * xt
var = _i(self.posterior_variance, t, xt)
log_var = _i(self.posterior_log_variance_clipped, t, xt)
return mu, var, log_var
@torch.no_grad()
def p_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None):
r"""Sample from p(x_{t-1} | x_t).
- condition_fn: for classifier-based guidance (guided-diffusion).
- guide_scale: for classifier-free guidance (glide/dalle-2).
"""
# predict distribution of p(x_{t-1} | x_t)
mu, var, log_var, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
# random sample (with optional conditional function)
noise = torch.randn_like(xt)
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1))) # no noise when t == 0
if condition_fn is not None:
grad = condition_fn(xt, self._scale_timesteps(t), **model_kwargs)
mu = mu.float() + var * grad.float()
xt_1 = mu + mask * torch.exp(0.5 * log_var) * noise
return xt_1, x0
@torch.no_grad()
def p_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None):
r"""Sample from p(x_{t-1} | x_t) p(x_{t-2} | x_{t-1}) ... p(x_0 | x_1).
"""
# prepare input
b = noise.size(0)
xt = noise
# diffusion process
for step in torch.arange(self.num_timesteps).flip(0):
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.p_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale)
return xt
def p_mean_variance(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None, context_size=32, context_stride=1, context_overlap=4, context_batch_size=1):
r"""Distribution of p(x_{t-1} | x_t).
"""
noise = xt
context_queue = list(
context_scheduler(
0,
31,
noise.shape[2],
context_size=context_size,
context_stride=context_stride,
context_overlap=context_overlap,
)
)
context_step = min(
context_stride, int(np.ceil(np.log2(noise.shape[2] / context_size))) + 1
)
# replace the final segment to improve temporal consistency
num_frames = noise.shape[2]
context_queue[-1] = [
e % num_frames
for e in range(num_frames - context_size * context_step, num_frames, context_step)
]
import math
# context_batch_size = 1
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
global_context = []
for i in range(num_context_batches):
global_context.append(
context_queue[
i * context_batch_size : (i + 1) * context_batch_size
]
)
noise_pred = torch.zeros_like(noise)
noise_pred_uncond = torch.zeros_like(noise)
counter = torch.zeros(
(1, 1, xt.shape[2], 1, 1),
device=xt.device,
dtype=xt.dtype,
)
for i_index, context in enumerate(global_context):
latent_model_input = torch.cat([xt[:, :, c] for c in context])
bs_context = len(context)
model_kwargs_new = [{
'y': None,
"local_image": None if not model_kwargs[0].__contains__('local_image') else torch.cat([model_kwargs[0]["local_image"][:, :, c] for c in context]),
'image': None if not model_kwargs[0].__contains__('image') else model_kwargs[0]["image"].repeat(bs_context, 1, 1),
'dwpose': None if not model_kwargs[0].__contains__('dwpose') else torch.cat([model_kwargs[0]["dwpose"][:, :, [0]+[ii+1 for ii in c]] for c in context]),
'randomref': None if not model_kwargs[0].__contains__('randomref') else torch.cat([model_kwargs[0]["randomref"][:, :, c] for c in context]),
},
{
'y': None,
"local_image": None,
'image': None,
'randomref': None,
'dwpose': None,
}]
if guide_scale is None:
out = model(latent_model_input, self._scale_timesteps(t), **model_kwargs)
for j, c in enumerate(context):
noise_pred[:, :, c] = noise_pred[:, :, c] + out
counter[:, :, c] = counter[:, :, c] + 1
else:
# classifier-free guidance
# (model_kwargs[0]: conditional kwargs; model_kwargs[1]: non-conditional kwargs)
# assert isinstance(model_kwargs, list) and len(model_kwargs) == 2
y_out = model(latent_model_input, self._scale_timesteps(t).repeat(bs_context), **model_kwargs_new[0])
u_out = model(latent_model_input, self._scale_timesteps(t).repeat(bs_context), **model_kwargs_new[1])
dim = y_out.size(1) if self.var_type.startswith('fixed') else y_out.size(1) // 2
for j, c in enumerate(context):
noise_pred[:, :, c] = noise_pred[:, :, c] + y_out[j:j+1]
noise_pred_uncond[:, :, c] = noise_pred_uncond[:, :, c] + u_out[j:j+1]
counter[:, :, c] = counter[:, :, c] + 1
noise_pred = noise_pred / counter
noise_pred_uncond = noise_pred_uncond / counter
out = torch.cat([
noise_pred_uncond[:, :dim] + guide_scale * (noise_pred[:, :dim] - noise_pred_uncond[:, :dim]),
noise_pred[:, dim:]], dim=1) # guide_scale=2.5
# compute variance
if self.var_type == 'learned':
out, log_var = out.chunk(2, dim=1)
var = torch.exp(log_var)
elif self.var_type == 'learned_range':
out, fraction = out.chunk(2, dim=1)
min_log_var = _i(self.posterior_log_variance_clipped, t, xt)
max_log_var = _i(torch.log(self.betas), t, xt)
fraction = (fraction + 1) / 2.0
log_var = fraction * max_log_var + (1 - fraction) * min_log_var
var = torch.exp(log_var)
elif self.var_type == 'fixed_large':
var = _i(torch.cat([self.posterior_variance[1:2], self.betas[1:]]), t, xt)
log_var = torch.log(var)
elif self.var_type == 'fixed_small':
var = _i(self.posterior_variance, t, xt)
log_var = _i(self.posterior_log_variance_clipped, t, xt)
# compute mean and x0
if self.mean_type == 'x_{t-1}':
mu = out # x_{t-1}
x0 = _i(1.0 / self.posterior_mean_coef1, t, xt) * mu - \
_i(self.posterior_mean_coef2 / self.posterior_mean_coef1, t, xt) * xt
elif self.mean_type == 'x0':
x0 = out
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
elif self.mean_type == 'eps':
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * out
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
elif self.mean_type == 'v':
x0 = _i(self.sqrt_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_one_minus_alphas_cumprod, t, xt) * out
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
# restrict the range of x0
if percentile is not None:
assert percentile > 0 and percentile <= 1 # e.g., 0.995
s = torch.quantile(x0.flatten(1).abs(), percentile, dim=1).clamp_(1.0).view(-1, 1, 1, 1)
x0 = torch.min(s, torch.max(-s, x0)) / s
elif clamp is not None:
x0 = x0.clamp(-clamp, clamp)
return mu, var, log_var, x0
@torch.no_grad()
def ddim_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, ddim_timesteps=20, eta=0.0, context_size=32, context_stride=1, context_overlap=4, context_batch_size=1):
r"""Sample from p(x_{t-1} | x_t) using DDIM.
- condition_fn: for classifier-based guidance (guided-diffusion).
- guide_scale: for classifier-free guidance (glide/dalle-2).
"""
stride = self.num_timesteps // ddim_timesteps
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale, context_size, context_stride, context_overlap, context_batch_size)
if condition_fn is not None:
# x0 -> eps
alpha = _i(self.alphas_cumprod, t, xt)
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
eps = eps - (1 - alpha).sqrt() * condition_fn(xt, self._scale_timesteps(t), **model_kwargs)
# eps -> x0
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
# derive variables
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
alphas = _i(self.alphas_cumprod, t, xt)
alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt)
sigmas = eta * torch.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
# random sample
noise = torch.randn_like(xt)
direction = torch.sqrt(1 - alphas_prev - sigmas ** 2) * eps
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))
xt_1 = torch.sqrt(alphas_prev) * x0 + direction + mask * sigmas * noise
return xt_1, x0
@torch.no_grad()
def ddim_sample_loop(self, noise, context_size, context_stride, context_overlap, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, ddim_timesteps=20, eta=0.0, context_batch_size=1):
# prepare input
b = noise.size(0)
xt = noise
# diffusion process (TODO: clamp is inaccurate! Consider replacing the stride by explicit prev/next steps)
steps = (1 + torch.arange(0, self.num_timesteps, self.num_timesteps // ddim_timesteps)).clamp(0, self.num_timesteps - 1).flip(0)
from tqdm import tqdm
for step in tqdm(steps):
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.ddim_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale, ddim_timesteps, eta, context_size=context_size, context_stride=context_stride, context_overlap=context_overlap, context_batch_size=context_batch_size)
return xt
@torch.no_grad()
def ddim_reverse_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None, ddim_timesteps=20):
r"""Sample from p(x_{t+1} | x_t) using DDIM reverse ODE (deterministic).
"""
stride = self.num_timesteps // ddim_timesteps
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
# derive variables
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
alphas_next = _i(
torch.cat([self.alphas_cumprod, self.alphas_cumprod.new_zeros([1])]),
(t + stride).clamp(0, self.num_timesteps), xt)
# reverse sample
mu = torch.sqrt(alphas_next) * x0 + torch.sqrt(1 - alphas_next) * eps
return mu, x0
@torch.no_grad()
def ddim_reverse_sample_loop(self, x0, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None, ddim_timesteps=20):
# prepare input
b = x0.size(0)
xt = x0
# reconstruction steps
steps = torch.arange(0, self.num_timesteps, self.num_timesteps // ddim_timesteps)
for step in steps:
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.ddim_reverse_sample(xt, t, model, model_kwargs, clamp, percentile, guide_scale, ddim_timesteps)
return xt
@torch.no_grad()
def plms_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, plms_timesteps=20):
r"""Sample from p(x_{t-1} | x_t) using PLMS.
- condition_fn: for classifier-based guidance (guided-diffusion).
- guide_scale: for classifier-free guidance (glide/dalle-2).
"""
stride = self.num_timesteps // plms_timesteps
# function for compute eps
def compute_eps(xt, t):
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
# condition
if condition_fn is not None:
# x0 -> eps
alpha = _i(self.alphas_cumprod, t, xt)
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
eps = eps - (1 - alpha).sqrt() * condition_fn(xt, self._scale_timesteps(t), **model_kwargs)
# eps -> x0
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
# derive eps
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
return eps
# function for compute x_0 and x_{t-1}
def compute_x0(eps, t):
# eps -> x0
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
# deterministic sample
alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt)
direction = torch.sqrt(1 - alphas_prev) * eps
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))
xt_1 = torch.sqrt(alphas_prev) * x0 + direction
return xt_1, x0
# PLMS sample
eps = compute_eps(xt, t)
if len(eps_cache) == 0:
# 2nd order pseudo improved Euler
xt_1, x0 = compute_x0(eps, t)
eps_next = compute_eps(xt_1, (t - stride).clamp(0))
eps_prime = (eps + eps_next) / 2.0
elif len(eps_cache) == 1:
# 2nd order pseudo linear multistep (Adams-Bashforth)
eps_prime = (3 * eps - eps_cache[-1]) / 2.0
elif len(eps_cache) == 2:
# 3nd order pseudo linear multistep (Adams-Bashforth)
eps_prime = (23 * eps - 16 * eps_cache[-1] + 5 * eps_cache[-2]) / 12.0
elif len(eps_cache) >= 3:
# 4nd order pseudo linear multistep (Adams-Bashforth)
eps_prime = (55 * eps - 59 * eps_cache[-1] + 37 * eps_cache[-2] - 9 * eps_cache[-3]) / 24.0
xt_1, x0 = compute_x0(eps_prime, t)
return xt_1, x0, eps
@torch.no_grad()
def plms_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, plms_timesteps=20):
# prepare input
b = noise.size(0)
xt = noise
# diffusion process
steps = (1 + torch.arange(0, self.num_timesteps, self.num_timesteps // plms_timesteps)).clamp(0, self.num_timesteps - 1).flip(0)
eps_cache = []
for step in steps:
# PLMS sampling step
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _, eps = self.plms_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale, plms_timesteps, eps_cache)
# update eps cache
eps_cache.append(eps)
if len(eps_cache) >= 4:
eps_cache.pop(0)
return xt
def loss(self, x0, t, model, model_kwargs={}, noise=None, weight = None, use_div_loss= False, loss_mask=None):
# noise = torch.randn_like(x0) if noise is None else noise # [80, 4, 8, 32, 32]
noise = self.sample_loss(x0, noise)
xt = self.q_sample(x0, t, noise=noise)
# compute loss
if self.loss_type in ['kl', 'rescaled_kl']:
loss, _ = self.variational_lower_bound(x0, xt, t, model, model_kwargs)
if self.loss_type == 'rescaled_kl':
loss = loss * self.num_timesteps
elif self.loss_type in ['mse', 'rescaled_mse', 'l1', 'rescaled_l1']: # self.loss_type: mse
out = model(xt, self._scale_timesteps(t), **model_kwargs)
# VLB for variation
loss_vlb = 0.0
if self.var_type in ['learned', 'learned_range']: # self.var_type: 'fixed_small'
out, var = out.chunk(2, dim=1)
frozen = torch.cat([out.detach(), var], dim=1) # learn var without affecting the prediction of mean
loss_vlb, _ = self.variational_lower_bound(x0, xt, t, model=lambda *args, **kwargs: frozen)
if self.loss_type.startswith('rescaled_'):
loss_vlb = loss_vlb * self.num_timesteps / 1000.0
# MSE/L1 for x0/eps
# target = {'eps': noise, 'x0': x0, 'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0]}[self.mean_type]
target = {
'eps': noise,
'x0': x0,
'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0],
'v':_i(self.sqrt_alphas_cumprod, t, xt) * noise - _i(self.sqrt_one_minus_alphas_cumprod, t, xt) * x0}[self.mean_type]
if loss_mask is not None:
loss_mask = loss_mask[:, :, 0, ...].unsqueeze(2) # just use one channel (all channels are same)
loss_mask = loss_mask.permute(0, 2, 1, 3, 4) # b,c,f,h,w
# use masked diffusion
loss = (out * loss_mask - target * loss_mask).pow(1 if self.loss_type.endswith('l1') else 2).abs().flatten(1).mean(dim=1)
else:
loss = (out - target).pow(1 if self.loss_type.endswith('l1') else 2).abs().flatten(1).mean(dim=1)
if weight is not None:
loss = loss*weight
# div loss
if use_div_loss and self.mean_type == 'eps' and x0.shape[2]>1:
# derive x0
x0_ = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt) * out
# ncfhw, std on f
div_loss = 0.001/(x0_.std(dim=2).flatten(1).mean(dim=1)+1e-4)
# print(div_loss,loss)
loss = loss+div_loss
# total loss
loss = loss + loss_vlb
elif self.loss_type in ['charbonnier']:
out = model(xt, self._scale_timesteps(t), **model_kwargs)
# VLB for variation
loss_vlb = 0.0
if self.var_type in ['learned', 'learned_range']:
out, var = out.chunk(2, dim=1)
frozen = torch.cat([out.detach(), var], dim=1) # learn var without affecting the prediction of mean
loss_vlb, _ = self.variational_lower_bound(x0, xt, t, model=lambda *args, **kwargs: frozen)
if self.loss_type.startswith('rescaled_'):
loss_vlb = loss_vlb * self.num_timesteps / 1000.0
# MSE/L1 for x0/eps
target = {'eps': noise, 'x0': x0, 'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0]}[self.mean_type]
loss = torch.sqrt((out - target)**2 + self.epsilon)
if weight is not None:
loss = loss*weight
loss = loss.flatten(1).mean(dim=1)
# total loss
loss = loss + loss_vlb
return loss
def variational_lower_bound(self, x0, xt, t, model, model_kwargs={}, clamp=None, percentile=None):
# compute groundtruth and predicted distributions
mu1, _, log_var1 = self.q_posterior_mean_variance(x0, xt, t)
mu2, _, log_var2, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile)
# compute KL loss
kl = kl_divergence(mu1, log_var1, mu2, log_var2)
kl = kl.flatten(1).mean(dim=1) / math.log(2.0)
# compute discretized NLL loss (for p(x0 | x1) only)
nll = -discretized_gaussian_log_likelihood(x0, mean=mu2, log_scale=0.5 * log_var2)
nll = nll.flatten(1).mean(dim=1) / math.log(2.0)
# NLL for p(x0 | x1) and KL otherwise
vlb = torch.where(t == 0, nll, kl)
return vlb, x0
@torch.no_grad()
def variational_lower_bound_loop(self, x0, model, model_kwargs={}, clamp=None, percentile=None):
r"""Compute the entire variational lower bound, measured in bits-per-dim.
"""
# prepare input and output
b = x0.size(0)
metrics = {'vlb': [], 'mse': [], 'x0_mse': []}
# loop
for step in torch.arange(self.num_timesteps).flip(0):
# compute VLB
t = torch.full((b, ), step, dtype=torch.long, device=x0.device)
# noise = torch.randn_like(x0)
noise = self.sample_loss(x0)
xt = self.q_sample(x0, t, noise)
vlb, pred_x0 = self.variational_lower_bound(x0, xt, t, model, model_kwargs, clamp, percentile)
# predict eps from x0
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
_i(self.sqrt_recipm1_alphas_cumprod, t, xt)
# collect metrics
metrics['vlb'].append(vlb)
metrics['x0_mse'].append((pred_x0 - x0).square().flatten(1).mean(dim=1))
metrics['mse'].append((eps - noise).square().flatten(1).mean(dim=1))
metrics = {k: torch.stack(v, dim=1) for k, v in metrics.items()}
# compute the prior KL term for VLB, measured in bits-per-dim
mu, _, log_var = self.q_mean_variance(x0, t)
kl_prior = kl_divergence(mu, log_var, torch.zeros_like(mu), torch.zeros_like(log_var))
kl_prior = kl_prior.flatten(1).mean(dim=1) / math.log(2.0)
# update metrics
metrics['prior_bits_per_dim'] = kl_prior
metrics['total_bits_per_dim'] = metrics['vlb'].sum(dim=1) + kl_prior
return metrics
def _scale_timesteps(self, t):
if self.rescale_timesteps:
return t.float() * 1000.0 / self.num_timesteps
return t
#return t.float()
def ordered_halving(val):
bin_str = f"{val:064b}"
bin_flip = bin_str[::-1]
as_int = int(bin_flip, 2)
return as_int / (1 << 64)
def context_scheduler(
step: int = ...,
num_steps: Optional[int] = None,
num_frames: int = ...,
context_size: Optional[int] = None,
context_stride: int = 3,
context_overlap: int = 4,
closed_loop: bool = False,
):
if num_frames <= context_size:
yield list(range(num_frames))
return
context_stride = min(
context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1
)
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(step)))
for j in range(
int(ordered_halving(step) * context_step) + pad,
num_frames + pad + (0 if closed_loop else -context_overlap),
(context_size * context_step - context_overlap),
):
yield [
e % num_frames
for e in range(j, j + context_size * context_step, context_step)
]