PoseModifier / UniAnimate /tools /inferences /inference_unianimate_entrance.py
Evgeny Zhukov
Origin: https://github.com/ali-vilab/UniAnimate/commit/d7814fa44a0a1154524b92fce0e3133a2604d333
2ba4412
'''
/*
*Copyright (c) 2021, Alibaba Group;
*Licensed under the Apache License, Version 2.0 (the "License");
*you may not use this file except in compliance with the License.
*You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*Unless required by applicable law or agreed to in writing, software
*distributed under the License is distributed on an "AS IS" BASIS,
*WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*See the License for the specific language governing permissions and
*limitations under the License.
*/
'''
import os
import re
import os.path as osp
import sys
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-4]))
import json
import math
import torch
import pynvml
import logging
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.cuda.amp as amp
from importlib import reload
import torch.distributed as dist
import torch.multiprocessing as mp
import random
from einops import rearrange
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from torch.nn.parallel import DistributedDataParallel
import utils.transforms as data
from ..modules.config import cfg
from utils.seed import setup_seed
from utils.multi_port import find_free_port
from utils.assign_cfg import assign_signle_cfg
from utils.distributed import generalized_all_gather, all_reduce
from utils.video_op import save_i2vgen_video, save_t2vhigen_video_safe, save_video_multiple_conditions_not_gif_horizontal_3col
from tools.modules.autoencoder import get_first_stage_encoding
from utils.registry_class import INFER_ENGINE, MODEL, EMBEDDER, AUTO_ENCODER, DIFFUSION
from copy import copy
import cv2
@INFER_ENGINE.register_function()
def inference_unianimate_entrance(cfg_update, **kwargs):
for k, v in cfg_update.items():
if isinstance(v, dict) and k in cfg:
cfg[k].update(v)
else:
cfg[k] = v
if not 'MASTER_ADDR' in os.environ:
os.environ['MASTER_ADDR']='localhost'
os.environ['MASTER_PORT']= find_free_port()
cfg.pmi_rank = int(os.getenv('RANK', 0))
cfg.pmi_world_size = int(os.getenv('WORLD_SIZE', 1))
if cfg.debug:
cfg.gpus_per_machine = 1
cfg.world_size = 1
else:
cfg.gpus_per_machine = torch.cuda.device_count()
cfg.world_size = cfg.pmi_world_size * cfg.gpus_per_machine
if cfg.world_size == 1:
worker(0, cfg, cfg_update)
else:
mp.spawn(worker, nprocs=cfg.gpus_per_machine, args=(cfg, cfg_update))
return cfg
def make_masked_images(imgs, masks):
masked_imgs = []
for i, mask in enumerate(masks):
# concatenation
masked_imgs.append(torch.cat([imgs[i] * (1 - mask), (1 - mask)], dim=1))
return torch.stack(masked_imgs, dim=0)
def load_video_frames(ref_image_path, pose_file_path, train_trans, vit_transforms, train_trans_pose, max_frames=32, frame_interval = 1, resolution=[512, 768], get_first_frame=True, vit_resolution=[224, 224]):
for _ in range(5):
try:
dwpose_all = {}
frames_all = {}
for ii_index in sorted(os.listdir(pose_file_path)):
if ii_index != "ref_pose.jpg":
dwpose_all[ii_index] = Image.open(os.path.join(pose_file_path, ii_index))
frames_all[ii_index] = Image.fromarray(cv2.cvtColor(cv2.imread(ref_image_path), cv2.COLOR_BGR2RGB))
pose_ref = Image.open(os.path.join(pose_file_path, "ref_pose.jpg"))
# Sample max_frames poses for video generation
stride = frame_interval
total_frame_num = len(frames_all)
cover_frame_num = (stride * (max_frames - 1) + 1)
if total_frame_num < cover_frame_num:
print(f'_total_frame_num ({total_frame_num}) is smaller than cover_frame_num ({cover_frame_num}), the sampled frame interval is changed')
start_frame = 0
end_frame = total_frame_num
stride = max((total_frame_num - 1) // (max_frames - 1), 1)
end_frame = stride * max_frames
else:
start_frame = 0
end_frame = start_frame + cover_frame_num
frame_list = []
dwpose_list = []
random_ref_frame = frames_all[list(frames_all.keys())[0]]
if random_ref_frame.mode != 'RGB':
random_ref_frame = random_ref_frame.convert('RGB')
random_ref_dwpose = pose_ref
if random_ref_dwpose.mode != 'RGB':
random_ref_dwpose = random_ref_dwpose.convert('RGB')
for i_index in range(start_frame, end_frame, stride):
if i_index < len(frames_all): # Check index within bounds
i_key = list(frames_all.keys())[i_index]
i_frame = frames_all[i_key]
if i_frame.mode != 'RGB':
i_frame = i_frame.convert('RGB')
i_dwpose = dwpose_all[i_key]
if i_dwpose.mode != 'RGB':
i_dwpose = i_dwpose.convert('RGB')
frame_list.append(i_frame)
dwpose_list.append(i_dwpose)
if frame_list:
middle_indix = 0
ref_frame = frame_list[middle_indix]
vit_frame = vit_transforms(ref_frame)
random_ref_frame_tmp = train_trans_pose(random_ref_frame)
random_ref_dwpose_tmp = train_trans_pose(random_ref_dwpose)
misc_data_tmp = torch.stack([train_trans_pose(ss) for ss in frame_list], dim=0)
video_data_tmp = torch.stack([train_trans(ss) for ss in frame_list], dim=0)
dwpose_data_tmp = torch.stack([train_trans_pose(ss) for ss in dwpose_list], dim=0)
video_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
dwpose_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
misc_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
random_ref_frame_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
random_ref_dwpose_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
video_data[:len(frame_list), ...] = video_data_tmp
misc_data[:len(frame_list), ...] = misc_data_tmp
dwpose_data[:len(frame_list), ...] = dwpose_data_tmp
random_ref_frame_data[:, ...] = random_ref_frame_tmp
random_ref_dwpose_data[:, ...] = random_ref_dwpose_tmp
return vit_frame, video_data, misc_data, dwpose_data, random_ref_frame_data, random_ref_dwpose_data
except Exception as e:
logging.info(f'Error reading video frame: {e}')
continue
return None, None, None, None, None, None
def worker(gpu, cfg, cfg_update):
'''
Inference worker for each gpu
'''
for k, v in cfg_update.items():
if isinstance(v, dict) and k in cfg:
cfg[k].update(v)
else:
cfg[k] = v
cfg.gpu = gpu
cfg.seed = int(cfg.seed)
cfg.rank = cfg.pmi_rank * cfg.gpus_per_machine + gpu
setup_seed(cfg.seed + cfg.rank)
if not cfg.debug:
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
torch.backends.cudnn.benchmark = False
dist.init_process_group(backend='nccl', world_size=cfg.world_size, rank=cfg.rank)
# [Log] Save logging and make log dir
log_dir = generalized_all_gather(cfg.log_dir)[0]
inf_name = osp.basename(cfg.cfg_file).split('.')[0]
test_model = osp.basename(cfg.test_model).split('.')[0].split('_')[-1]
cfg.log_dir = osp.join(cfg.log_dir, '%s' % (inf_name))
os.makedirs(cfg.log_dir, exist_ok=True)
log_file = osp.join(cfg.log_dir, 'log_%02d.txt' % (cfg.rank))
cfg.log_file = log_file
reload(logging)
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] %(levelname)s: %(message)s',
handlers=[
logging.FileHandler(filename=log_file),
logging.StreamHandler(stream=sys.stdout)])
logging.info(cfg)
logging.info(f"Running UniAnimate inference on gpu {gpu}")
# [Diffusion]
diffusion = DIFFUSION.build(cfg.Diffusion)
# [Data] Data Transform
train_trans = data.Compose([
data.Resize(cfg.resolution),
data.ToTensor(),
data.Normalize(mean=cfg.mean, std=cfg.std)
])
train_trans_pose = data.Compose([
data.Resize(cfg.resolution),
data.ToTensor(),
]
)
vit_transforms = T.Compose([
data.Resize(cfg.vit_resolution),
T.ToTensor(),
T.Normalize(mean=cfg.vit_mean, std=cfg.vit_std)])
# [Model] embedder
clip_encoder = EMBEDDER.build(cfg.embedder)
clip_encoder.model.to(gpu)
with torch.no_grad():
_, _, zero_y = clip_encoder(text="")
# [Model] auotoencoder
autoencoder = AUTO_ENCODER.build(cfg.auto_encoder)
autoencoder.eval() # freeze
for param in autoencoder.parameters():
param.requires_grad = False
autoencoder.cuda()
# [Model] UNet
if "config" in cfg.UNet:
cfg.UNet["config"] = cfg
cfg.UNet["zero_y"] = zero_y
model = MODEL.build(cfg.UNet)
state_dict = torch.load(cfg.test_model, map_location='cpu')
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
if 'step' in state_dict:
resume_step = state_dict['step']
else:
resume_step = 0
status = model.load_state_dict(state_dict, strict=True)
logging.info('Load model from {} with status {}'.format(cfg.test_model, status))
model = model.to(gpu)
model.eval()
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
model.to(torch.float16)
else:
model = DistributedDataParallel(model, device_ids=[gpu]) if not cfg.debug else model
torch.cuda.empty_cache()
test_list = cfg.test_list_path
num_videos = len(test_list)
logging.info(f'There are {num_videos} videos. with {cfg.round} times')
# test_list = [item for item in test_list for _ in range(cfg.round)]
test_list = [item for _ in range(cfg.round) for item in test_list]
for idx, file_path in enumerate(test_list):
cfg.frame_interval, ref_image_key, pose_seq_key = file_path[0], file_path[1], file_path[2]
manual_seed = int(cfg.seed + cfg.rank + idx//num_videos)
setup_seed(manual_seed)
logging.info(f"[{idx}]/[{len(test_list)}] Begin to sample {ref_image_key}, pose sequence from {pose_seq_key} init seed {manual_seed} ...")
vit_frame, video_data, misc_data, dwpose_data, random_ref_frame_data, random_ref_dwpose_data = load_video_frames(ref_image_key, pose_seq_key, train_trans, vit_transforms, train_trans_pose, max_frames=cfg.max_frames, frame_interval =cfg.frame_interval, resolution=cfg.resolution)
misc_data = misc_data.unsqueeze(0).to(gpu)
vit_frame = vit_frame.unsqueeze(0).to(gpu)
dwpose_data = dwpose_data.unsqueeze(0).to(gpu)
random_ref_frame_data = random_ref_frame_data.unsqueeze(0).to(gpu)
random_ref_dwpose_data = random_ref_dwpose_data.unsqueeze(0).to(gpu)
### save for visualization
misc_backups = copy(misc_data)
frames_num = misc_data.shape[1]
misc_backups = rearrange(misc_backups, 'b f c h w -> b c f h w')
mv_data_video = []
### local image (first frame)
image_local = []
if 'local_image' in cfg.video_compositions:
frames_num = misc_data.shape[1]
bs_vd_local = misc_data.shape[0]
image_local = misc_data[:,:1].clone().repeat(1,frames_num,1,1,1)
image_local_clone = rearrange(image_local, 'b f c h w -> b c f h w', b = bs_vd_local)
image_local = rearrange(image_local, 'b f c h w -> b c f h w', b = bs_vd_local)
if hasattr(cfg, "latent_local_image") and cfg.latent_local_image:
with torch.no_grad():
temporal_length = frames_num
encoder_posterior = autoencoder.encode(video_data[:,0])
local_image_data = get_first_stage_encoding(encoder_posterior).detach()
image_local = local_image_data.unsqueeze(1).repeat(1,temporal_length,1,1,1) # [10, 16, 4, 64, 40]
### encode the video_data
bs_vd = misc_data.shape[0]
misc_data = rearrange(misc_data, 'b f c h w -> (b f) c h w')
misc_data_list = torch.chunk(misc_data, misc_data.shape[0]//cfg.chunk_size,dim=0)
with torch.no_grad():
random_ref_frame = []
if 'randomref' in cfg.video_compositions:
random_ref_frame_clone = rearrange(random_ref_frame_data, 'b f c h w -> b c f h w')
if hasattr(cfg, "latent_random_ref") and cfg.latent_random_ref:
temporal_length = random_ref_frame_data.shape[1]
encoder_posterior = autoencoder.encode(random_ref_frame_data[:,0].sub(0.5).div_(0.5))
random_ref_frame_data = get_first_stage_encoding(encoder_posterior).detach()
random_ref_frame_data = random_ref_frame_data.unsqueeze(1).repeat(1,temporal_length,1,1,1) # [10, 16, 4, 64, 40]
random_ref_frame = rearrange(random_ref_frame_data, 'b f c h w -> b c f h w')
if 'dwpose' in cfg.video_compositions:
bs_vd_local = dwpose_data.shape[0]
dwpose_data_clone = rearrange(dwpose_data.clone(), 'b f c h w -> b c f h w', b = bs_vd_local)
if 'randomref_pose' in cfg.video_compositions:
dwpose_data = torch.cat([random_ref_dwpose_data[:,:1], dwpose_data], dim=1)
dwpose_data = rearrange(dwpose_data, 'b f c h w -> b c f h w', b = bs_vd_local)
y_visual = []
if 'image' in cfg.video_compositions:
with torch.no_grad():
vit_frame = vit_frame.squeeze(1)
y_visual = clip_encoder.encode_image(vit_frame).unsqueeze(1) # [60, 1024]
y_visual0 = y_visual.clone()
with amp.autocast(enabled=True):
pynvml.nvmlInit()
handle=pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo=pynvml.nvmlDeviceGetMemoryInfo(handle)
cur_seed = torch.initial_seed()
logging.info(f"Current seed {cur_seed} ...")
noise = torch.randn([1, 4, cfg.max_frames, int(cfg.resolution[1]/cfg.scale), int(cfg.resolution[0]/cfg.scale)])
noise = noise.to(gpu)
if hasattr(cfg.Diffusion, "noise_strength"):
b, c, f, _, _= noise.shape
offset_noise = torch.randn(b, c, f, 1, 1, device=noise.device)
noise = noise + cfg.Diffusion.noise_strength * offset_noise
# add a noise prior
noise = diffusion.q_sample(random_ref_frame.clone(), getattr(cfg, "noise_prior_value", 949), noise=noise)
# construct model inputs (CFG)
full_model_kwargs=[{
'y': None,
"local_image": None if len(image_local) == 0 else image_local[:],
'image': None if len(y_visual) == 0 else y_visual0[:],
'dwpose': None if len(dwpose_data) == 0 else dwpose_data[:],
'randomref': None if len(random_ref_frame) == 0 else random_ref_frame[:],
},
{
'y': None,
"local_image": None,
'image': None,
'randomref': None,
'dwpose': None,
}]
# for visualization
full_model_kwargs_vis =[{
'y': None,
"local_image": None if len(image_local) == 0 else image_local_clone[:],
'image': None,
'dwpose': None if len(dwpose_data_clone) == 0 else dwpose_data_clone[:],
'randomref': None if len(random_ref_frame) == 0 else random_ref_frame_clone[:, :3],
},
{
'y': None,
"local_image": None,
'image': None,
'randomref': None,
'dwpose': None,
}]
partial_keys = [
['image', 'randomref', "dwpose"],
]
if hasattr(cfg, "partial_keys") and cfg.partial_keys:
partial_keys = cfg.partial_keys
for partial_keys_one in partial_keys:
model_kwargs_one = prepare_model_kwargs(partial_keys = partial_keys_one,
full_model_kwargs = full_model_kwargs,
use_fps_condition = cfg.use_fps_condition)
model_kwargs_one_vis = prepare_model_kwargs(partial_keys = partial_keys_one,
full_model_kwargs = full_model_kwargs_vis,
use_fps_condition = cfg.use_fps_condition)
noise_one = noise
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
clip_encoder.cpu() # add this line
autoencoder.cpu() # add this line
torch.cuda.empty_cache() # add this line
video_data = diffusion.ddim_sample_loop(
noise=noise_one,
model=model.eval(),
model_kwargs=model_kwargs_one,
guide_scale=cfg.guide_scale,
ddim_timesteps=cfg.ddim_timesteps,
eta=0.0)
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
# if run forward of autoencoder or clip_encoder second times, load them again
clip_encoder.cuda()
autoencoder.cuda()
video_data = 1. / cfg.scale_factor * video_data
video_data = rearrange(video_data, 'b c f h w -> (b f) c h w')
chunk_size = min(cfg.decoder_bs, video_data.shape[0])
video_data_list = torch.chunk(video_data, video_data.shape[0]//chunk_size, dim=0)
decode_data = []
for vd_data in video_data_list:
gen_frames = autoencoder.decode(vd_data)
decode_data.append(gen_frames)
video_data = torch.cat(decode_data, dim=0)
video_data = rearrange(video_data, '(b f) c h w -> b c f h w', b = cfg.batch_size).float()
text_size = cfg.resolution[-1]
cap_name = re.sub(r'[^\w\s]', '', ref_image_key.split("/")[-1].split('.')[0]) # .replace(' ', '_')
name = f'seed_{cur_seed}'
for ii in partial_keys_one:
name = name + "_" + ii
file_name = f'rank_{cfg.world_size:02d}_{cfg.rank:02d}_{idx:02d}_{name}_{cap_name}_{cfg.resolution[1]}x{cfg.resolution[0]}.mp4'
local_path = os.path.join(cfg.log_dir, f'{file_name}')
os.makedirs(os.path.dirname(local_path), exist_ok=True)
captions = "human"
del model_kwargs_one_vis[0][list(model_kwargs_one_vis[0].keys())[0]]
del model_kwargs_one_vis[1][list(model_kwargs_one_vis[1].keys())[0]]
save_video_multiple_conditions_not_gif_horizontal_3col(local_path, video_data.cpu(), model_kwargs_one_vis, misc_backups,
cfg.mean, cfg.std, nrow=1, save_fps=cfg.save_fps)
# try:
# save_t2vhigen_video_safe(local_path, video_data.cpu(), captions, cfg.mean, cfg.std, text_size)
# logging.info('Save video to dir %s:' % (local_path))
# except Exception as e:
# logging.info(f'Step: save text or video error with {e}')
logging.info('Congratulations! The inference is completed!')
# synchronize to finish some processes
if not cfg.debug:
torch.cuda.synchronize()
dist.barrier()
def prepare_model_kwargs(partial_keys, full_model_kwargs, use_fps_condition=False):
if use_fps_condition is True:
partial_keys.append('fps')
partial_model_kwargs = [{}, {}]
for partial_key in partial_keys:
partial_model_kwargs[0][partial_key] = full_model_kwargs[0][partial_key]
partial_model_kwargs[1][partial_key] = full_model_kwargs[1][partial_key]
return partial_model_kwargs