Spaces:
Sleeping
Sleeping
Evgeny Zhukov
Origin: https://github.com/ali-vilab/UniAnimate/commit/d7814fa44a0a1154524b92fce0e3133a2604d333
2ba4412
import os | |
import sys | |
import torch | |
import imageio | |
import numpy as np | |
import os.path as osp | |
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-2])) | |
from thop import profile | |
from ptflops import get_model_complexity_info | |
import artist.data as data | |
from tools.modules.config import cfg | |
from utils.config import Config as pConfig | |
from utils.registry_class import ENGINE, MODEL | |
def test_model(): | |
cfg_update = pConfig(load=True) | |
for k, v in cfg_update.cfg_dict.items(): | |
if isinstance(v, dict) and k in cfg: | |
cfg[k].update(v) | |
else: | |
cfg[k] = v | |
model = MODEL.build(cfg.UNet) | |
print(int(sum(p.numel() for k, p in model.named_parameters()) / (1024 ** 2)), 'M parameters') | |
# state_dict = torch.load('cache/pretrain_model/jiuniu_0600000.pth', map_location='cpu') | |
# model.load_state_dict(state_dict, strict=False) | |
model = model.cuda() | |
x = torch.Tensor(1, 4, 16, 32, 56).cuda() | |
t = torch.Tensor(1).cuda() | |
sims = torch.Tensor(1, 32).cuda() | |
fps = torch.Tensor([8]).cuda() | |
y = torch.Tensor(1, 1, 1024).cuda() | |
image = torch.Tensor(1, 3, 256, 448).cuda() | |
ret = model(x=x, t=t, y=y, ori_img=image, sims=sims, fps=fps) | |
print('Out shape if {}'.format(ret.shape)) | |
# flops, params = profile(model=model, inputs=(x, t, y, image, sims, fps)) | |
# print('Model: {:.2f} GFLOPs and {:.2f}M parameters'.format(flops/1e9, params/1e6)) | |
def prepare_input(resolution): | |
return dict(x=[x, t, y, image, sims, fps]) | |
flops, params = get_model_complexity_info(model, (1, 4, 16, 32, 56), | |
input_constructor = prepare_input, | |
as_strings=True, print_per_layer_stat=True) | |
print(' - Flops: ' + flops) | |
print(' - Params: ' + params) | |
if __name__ == '__main__': | |
test_model() | |