Evgeny Zhukov
Origin: https://github.com/ali-vilab/UniAnimate/commit/d7814fa44a0a1154524b92fce0e3133a2604d333
2ba4412
import os
import sys
import torch
import imageio
import numpy as np
import os.path as osp
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-2]))
from thop import profile
from ptflops import get_model_complexity_info
import artist.data as data
from tools.modules.config import cfg
from utils.config import Config as pConfig
from utils.registry_class import ENGINE, MODEL
def test_model():
cfg_update = pConfig(load=True)
for k, v in cfg_update.cfg_dict.items():
if isinstance(v, dict) and k in cfg:
cfg[k].update(v)
else:
cfg[k] = v
model = MODEL.build(cfg.UNet)
print(int(sum(p.numel() for k, p in model.named_parameters()) / (1024 ** 2)), 'M parameters')
# state_dict = torch.load('cache/pretrain_model/jiuniu_0600000.pth', map_location='cpu')
# model.load_state_dict(state_dict, strict=False)
model = model.cuda()
x = torch.Tensor(1, 4, 16, 32, 56).cuda()
t = torch.Tensor(1).cuda()
sims = torch.Tensor(1, 32).cuda()
fps = torch.Tensor([8]).cuda()
y = torch.Tensor(1, 1, 1024).cuda()
image = torch.Tensor(1, 3, 256, 448).cuda()
ret = model(x=x, t=t, y=y, ori_img=image, sims=sims, fps=fps)
print('Out shape if {}'.format(ret.shape))
# flops, params = profile(model=model, inputs=(x, t, y, image, sims, fps))
# print('Model: {:.2f} GFLOPs and {:.2f}M parameters'.format(flops/1e9, params/1e6))
def prepare_input(resolution):
return dict(x=[x, t, y, image, sims, fps])
flops, params = get_model_complexity_info(model, (1, 4, 16, 32, 56),
input_constructor = prepare_input,
as_strings=True, print_per_layer_stat=True)
print(' - Flops: ' + flops)
print(' - Params: ' + params)
if __name__ == '__main__':
test_model()