Spaces:
Running
Running
Evgeny Zhukov
Origin: https://github.com/ali-vilab/UniAnimate/commit/d7814fa44a0a1154524b92fce0e3133a2604d333
2ba4412
import os | |
import sys | |
import json | |
import torch | |
import imageio | |
import numpy as np | |
import os.path as osp | |
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-2])) | |
from thop import profile | |
from ptflops import get_model_complexity_info | |
import artist.data as data | |
from tools.modules.config import cfg | |
from tools.modules.unet.util import * | |
from utils.config import Config as pConfig | |
from utils.registry_class import ENGINE, MODEL | |
def save_temporal_key(): | |
cfg_update = pConfig(load=True) | |
for k, v in cfg_update.cfg_dict.items(): | |
if isinstance(v, dict) and k in cfg: | |
cfg[k].update(v) | |
else: | |
cfg[k] = v | |
model = MODEL.build(cfg.UNet) | |
temp_name = '' | |
temp_key_list = [] | |
spth = 'workspace/module_list/UNetSD_I2V_vs_Text_temporal_key_list.json' | |
for name, module in model.named_modules(): | |
if isinstance(module, (TemporalTransformer, TemporalTransformer_attemask, TemporalAttentionBlock, TemporalAttentionMultiBlock, TemporalConvBlock_v2, TemporalConvBlock)): | |
temp_name = name | |
print(f'Model: {name}') | |
elif isinstance(module, (ResidualBlock, ResBlock, SpatialTransformer, Upsample, Downsample)): | |
temp_name = '' | |
if hasattr(module, 'weight'): | |
if temp_name != '' and (temp_name in name): | |
temp_key_list.append(name) | |
print(f'{name}') | |
# print(name) | |
save_module_list = [] | |
for k, p in model.named_parameters(): | |
for item in temp_key_list: | |
if item in k: | |
print(f'{item} --> {k}') | |
save_module_list.append(k) | |
print(int(sum(p.numel() for k, p in model.named_parameters()) / (1024 ** 2)), 'M parameters') | |
# spth = 'workspace/module_list/{}' | |
json.dump(save_module_list, open(spth, 'w')) | |
a = 0 | |
def save_spatial_key(): | |
cfg_update = pConfig(load=True) | |
for k, v in cfg_update.cfg_dict.items(): | |
if isinstance(v, dict) and k in cfg: | |
cfg[k].update(v) | |
else: | |
cfg[k] = v | |
model = MODEL.build(cfg.UNet) | |
temp_name = '' | |
temp_key_list = [] | |
spth = 'workspace/module_list/UNetSD_I2V_HQ_P_spatial_key_list.json' | |
for name, module in model.named_modules(): | |
if isinstance(module, (ResidualBlock, ResBlock, SpatialTransformer, Upsample, Downsample)): | |
temp_name = name | |
print(f'Model: {name}') | |
elif isinstance(module, (TemporalTransformer, TemporalTransformer_attemask, TemporalAttentionBlock, TemporalAttentionMultiBlock, TemporalConvBlock_v2, TemporalConvBlock)): | |
temp_name = '' | |
if hasattr(module, 'weight'): | |
if temp_name != '' and (temp_name in name): | |
temp_key_list.append(name) | |
print(f'{name}') | |
# print(name) | |
save_module_list = [] | |
for k, p in model.named_parameters(): | |
for item in temp_key_list: | |
if item in k: | |
print(f'{item} --> {k}') | |
save_module_list.append(k) | |
print(int(sum(p.numel() for k, p in model.named_parameters()) / (1024 ** 2)), 'M parameters') | |
# spth = 'workspace/module_list/{}' | |
json.dump(save_module_list, open(spth, 'w')) | |
a = 0 | |
if __name__ == '__main__': | |
# save_temporal_key() | |
save_spatial_key() | |
# print([k for (k, _) in self.input_blocks.named_parameters()]) | |