File size: 13,793 Bytes
2ba4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import torch
import torch.nn.functional as F
import torch.distributed as dist
import functools
import pickle
import numpy as np
from collections import OrderedDict
from torch.autograd import Function

__all__ = ['is_dist_initialized',
           'get_world_size',
           'get_rank',
           'new_group',
           'destroy_process_group',
           'barrier',
           'broadcast',
           'all_reduce',
           'reduce',
           'gather',
           'all_gather',
           'reduce_dict',
           'get_global_gloo_group',
           'generalized_all_gather',
           'generalized_gather',
           'scatter',
           'reduce_scatter',
           'send',
           'recv',
           'isend',
           'irecv',
           'shared_random_seed',
           'diff_all_gather',
           'diff_all_reduce',
           'diff_scatter',
           'diff_copy',
           'spherical_kmeans',
           'sinkhorn']

#-------------------------------- Distributed operations --------------------------------#

def is_dist_initialized():
    return dist.is_available() and dist.is_initialized()

def get_world_size(group=None):
    return dist.get_world_size(group) if is_dist_initialized() else 1

def get_rank(group=None):
    return dist.get_rank(group) if is_dist_initialized() else 0

def new_group(ranks=None, **kwargs):
    if is_dist_initialized():
        return dist.new_group(ranks, **kwargs)
    return None

def destroy_process_group():
    if is_dist_initialized():
        dist.destroy_process_group()

def barrier(group=None, **kwargs):
    if get_world_size(group) > 1:
        dist.barrier(group, **kwargs)

def broadcast(tensor, src, group=None, **kwargs):
    if get_world_size(group) > 1:
        return dist.broadcast(tensor, src, group, **kwargs)

def all_reduce(tensor, op=dist.ReduceOp.SUM, group=None, **kwargs):
    if get_world_size(group) > 1:
        return dist.all_reduce(tensor, op, group, **kwargs)

def reduce(tensor, dst, op=dist.ReduceOp.SUM, group=None, **kwargs):
    if get_world_size(group) > 1:
        return dist.reduce(tensor, dst, op, group, **kwargs)

def gather(tensor, dst=0, group=None, **kwargs):
    rank = get_rank()  # global rank
    world_size = get_world_size(group)
    if world_size == 1:
        return [tensor]
    tensor_list = [torch.empty_like(tensor) for _ in range(world_size)] if rank == dst else None
    dist.gather(tensor, tensor_list, dst, group, **kwargs)
    return tensor_list

def all_gather(tensor, uniform_size=True, group=None, **kwargs):
    world_size = get_world_size(group)
    if world_size == 1:
        return [tensor]
    assert tensor.is_contiguous(), 'ops.all_gather requires the tensor to be contiguous()'
    
    if uniform_size:
        tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
        dist.all_gather(tensor_list, tensor, group, **kwargs)
        return tensor_list
    else:
        # collect tensor shapes across GPUs
        shape = tuple(tensor.shape)
        shape_list = generalized_all_gather(shape, group)

        # flatten the tensor
        tensor = tensor.reshape(-1)
        size = int(np.prod(shape))
        size_list = [int(np.prod(u)) for u in shape_list]
        max_size = max(size_list)

        # pad to maximum size
        if size != max_size:
            padding = tensor.new_zeros(max_size - size)
            tensor = torch.cat([tensor, padding], dim=0)
        
        # all_gather
        tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
        dist.all_gather(tensor_list, tensor, group, **kwargs)

        # reshape tensors
        tensor_list = [t[:n].view(s) for t, n, s in zip(
            tensor_list, size_list, shape_list)]
        return tensor_list

@torch.no_grad()
def reduce_dict(input_dict, group=None, reduction='mean', **kwargs):
    assert reduction in ['mean', 'sum']
    world_size = get_world_size(group)
    if world_size == 1:
        return input_dict
    
    # ensure that the orders of keys are consistent across processes
    if isinstance(input_dict, OrderedDict):
        keys = list(input_dict.keys)
    else:
        keys = sorted(input_dict.keys())
    vals = [input_dict[key] for key in keys]
    vals = torch.stack(vals, dim=0)
    dist.reduce(vals, dst=0, group=group, **kwargs)
    if dist.get_rank(group) == 0 and reduction == 'mean':
        vals /= world_size
    dist.broadcast(vals, src=0, group=group, **kwargs)
    reduced_dict = type(input_dict)([
        (key, val) for key, val in zip(keys, vals)])
    return reduced_dict

@functools.lru_cache()
def get_global_gloo_group():
    backend = dist.get_backend()
    assert backend in ['gloo', 'nccl']
    if backend == 'nccl':
        return dist.new_group(backend='gloo')
    else:
        return dist.group.WORLD

def _serialize_to_tensor(data, group):
    backend = dist.get_backend(group)
    assert backend in ['gloo', 'nccl']
    device = torch.device('cpu' if backend == 'gloo' else 'cuda')

    buffer = pickle.dumps(data)
    if len(buffer) > 1024 ** 3:
        logger = logging.getLogger(__name__)
        logger.warning(
            'Rank {} trying to all-gather {:.2f} GB of data on device'
            '{}'.format(get_rank(), len(buffer) / (1024 ** 3), device))
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to(device=device)
    return tensor

def _pad_to_largest_tensor(tensor, group):
    world_size = dist.get_world_size(group=group)
    assert world_size >= 1, \
        'gather/all_gather must be called from ranks within' \
        'the give group!'
    local_size = torch.tensor(
        [tensor.numel()], dtype=torch.int64, device=tensor.device)
    size_list = [torch.zeros(
        [1], dtype=torch.int64, device=tensor.device)
        for _ in range(world_size)]

    # gather tensors and compute the maximum size
    dist.all_gather(size_list, local_size, group=group)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    # pad tensors to the same size
    if local_size != max_size:
        padding = torch.zeros(
            (max_size - local_size, ),
            dtype=torch.uint8, device=tensor.device)
        tensor = torch.cat((tensor, padding), dim=0)
    return size_list, tensor

def generalized_all_gather(data, group=None):
    if get_world_size(group) == 1:
        return [data]
    if group is None:
        group = get_global_gloo_group()
    
    tensor = _serialize_to_tensor(data, group)
    size_list, tensor = _pad_to_largest_tensor(tensor, group)
    max_size = max(size_list)

    # receiving tensors from all ranks
    tensor_list = [torch.empty(
        (max_size, ), dtype=torch.uint8, device=tensor.device)
        for _ in size_list]
    dist.all_gather(tensor_list, tensor, group=group)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))
    return data_list

def generalized_gather(data, dst=0, group=None):
    world_size = get_world_size(group)
    if world_size == 1:
        return [data]
    if group is None:
        group = get_global_gloo_group()
    rank = dist.get_rank()  # global rank

    tensor = _serialize_to_tensor(data, group)
    size_list, tensor = _pad_to_largest_tensor(tensor, group)

    # receiving tensors from all ranks to dst
    if rank == dst:
        max_size = max(size_list)
        tensor_list = [torch.empty(
            (max_size, ), dtype=torch.uint8, device=tensor.device)
            for _ in size_list]
        dist.gather(tensor, tensor_list, dst=dst, group=group)

        data_list = []
        for size, tensor in zip(size_list, tensor_list):
            buffer = tensor.cpu().numpy().tobytes()[:size]
            data_list.append(pickle.loads(buffer))
        return data_list
    else:
        dist.gather(tensor, [], dst=dst, group=group)
        return []

def scatter(data, scatter_list=None, src=0, group=None, **kwargs):
    r"""NOTE: only supports CPU tensor communication.
    """
    if get_world_size(group) > 1:
        return dist.scatter(data, scatter_list, src, group, **kwargs)

def reduce_scatter(output, input_list, op=dist.ReduceOp.SUM, group=None, **kwargs):
    if get_world_size(group) > 1:
        return dist.reduce_scatter(output, input_list, op, group, **kwargs)

def send(tensor, dst, group=None, **kwargs):
    if get_world_size(group) > 1:
        assert tensor.is_contiguous(), 'ops.send requires the tensor to be contiguous()'
        return dist.send(tensor, dst, group, **kwargs)

def recv(tensor, src=None, group=None, **kwargs):
    if get_world_size(group) > 1:
        assert tensor.is_contiguous(), 'ops.recv requires the tensor to be contiguous()'
        return dist.recv(tensor, src, group, **kwargs)

def isend(tensor, dst, group=None, **kwargs):
    if get_world_size(group) > 1:
        assert tensor.is_contiguous(), 'ops.isend requires the tensor to be contiguous()'
        return dist.isend(tensor, dst, group, **kwargs)

def irecv(tensor, src=None, group=None, **kwargs):
    if get_world_size(group) > 1:
        assert tensor.is_contiguous(), 'ops.irecv requires the tensor to be contiguous()'
        return dist.irecv(tensor, src, group, **kwargs)

def shared_random_seed(group=None):
    seed = np.random.randint(2 ** 31)
    all_seeds = generalized_all_gather(seed, group)
    return all_seeds[0]

#-------------------------------- Differentiable operations --------------------------------#

def _all_gather(x):
    if not (dist.is_available() and dist.is_initialized()) or dist.get_world_size() == 1:
        return x
    rank = dist.get_rank()
    world_size = dist.get_world_size()
    tensors = [torch.empty_like(x) for _ in range(world_size)]
    tensors[rank] = x
    dist.all_gather(tensors, x)
    return torch.cat(tensors, dim=0).contiguous()

def _all_reduce(x):
    if not (dist.is_available() and dist.is_initialized()) or dist.get_world_size() == 1:
        return x
    dist.all_reduce(x)
    return x

def _split(x):
    if not (dist.is_available() and dist.is_initialized()) or dist.get_world_size() == 1:
        return x
    rank = dist.get_rank()
    world_size = dist.get_world_size()
    return x.chunk(world_size, dim=0)[rank].contiguous()

class DiffAllGather(Function):
    r"""Differentiable all-gather.
    """
    @staticmethod
    def symbolic(graph, input):
        return _all_gather(input)
    
    @staticmethod
    def forward(ctx, input):
        return _all_gather(input)
    
    @staticmethod
    def backward(ctx, grad_output):
        return _split(grad_output)

class DiffAllReduce(Function):
    r"""Differentiable all-reducd.
    """
    @staticmethod
    def symbolic(graph, input):
        return _all_reduce(input)
    
    @staticmethod
    def forward(ctx, input):
        return _all_reduce(input)
    
    @staticmethod
    def backward(ctx, grad_output):
        return grad_output

class DiffScatter(Function):
    r"""Differentiable scatter.
    """
    @staticmethod
    def symbolic(graph, input):
        return _split(input)
    
    @staticmethod
    def symbolic(ctx, input):
        return _split(input)
    
    @staticmethod
    def backward(ctx, grad_output):
        return _all_gather(grad_output)

class DiffCopy(Function):
    r"""Differentiable copy that reduces all gradients during backward.
    """
    @staticmethod
    def symbolic(graph, input):
        return input
    
    @staticmethod
    def forward(ctx, input):
        return input
    
    @staticmethod
    def backward(ctx, grad_output):
        return _all_reduce(grad_output)

diff_all_gather = DiffAllGather.apply
diff_all_reduce = DiffAllReduce.apply
diff_scatter = DiffScatter.apply
diff_copy = DiffCopy.apply

#-------------------------------- Distributed algorithms --------------------------------#

@torch.no_grad()
def spherical_kmeans(feats, num_clusters, num_iters=10):
    k, n, c = num_clusters, *feats.size()
    ones = feats.new_ones(n, dtype=torch.long)

    # distributed settings
    rank = get_rank()
    world_size = get_world_size()

    # init clusters
    rand_inds = torch.randperm(n)[:int(np.ceil(k / world_size))]
    clusters = torch.cat(all_gather(feats[rand_inds]), dim=0)[:k]

    # variables
    new_clusters = feats.new_zeros(k, c)
    counts = feats.new_zeros(k, dtype=torch.long)

    # iterative Expectation-Maximization
    for step in range(num_iters + 1):
        # Expectation step
        simmat = torch.mm(feats, clusters.t())
        scores, assigns = simmat.max(dim=1)
        if step == num_iters:
            break

        # Maximization step
        new_clusters.zero_().scatter_add_(0, assigns.unsqueeze(1).repeat(1, c), feats)
        all_reduce(new_clusters)

        counts.zero_()
        counts.index_add_(0, assigns, ones)
        all_reduce(counts)

        mask = (counts > 0)
        clusters[mask] = new_clusters[mask] / counts[mask].view(-1, 1)
        clusters = F.normalize(clusters, p=2, dim=1)
    return clusters, assigns, scores

@torch.no_grad()
def sinkhorn(Q, eps=0.5, num_iters=3):
    # normalize Q
    Q = torch.exp(Q / eps).t()
    sum_Q = Q.sum()
    all_reduce(sum_Q)
    Q /= sum_Q

    # variables
    n, m = Q.size()
    u = Q.new_zeros(n)
    r = Q.new_ones(n) / n
    c = Q.new_ones(m) / (m * get_world_size())

    # iterative update
    cur_sum = Q.sum(dim=1)
    all_reduce(cur_sum)
    for i in range(num_iters):
        u = cur_sum
        Q *= (r / u).unsqueeze(1)
        Q *= (c / Q.sum(dim=0)).unsqueeze(0)
        cur_sum = Q.sum(dim=1)
        all_reduce(cur_sum)
    return (Q / Q.sum(dim=0, keepdim=True)).t().float()