#!/usr/bin/env python3 from tweepy import Paginator, TooManyRequests import os import pandas as pd import pickle from tqdm import tqdm import yaml import boto3 from helper.twitter_client_wrapper import ( TWEET_FIELDS, format_tweets_df, format_context_annotations, load_topic_domains, load_topic_entities, TwitterClientWrapper ) USER_IDS_PATH = "users_ids.csv" def run(twitter_client, directory, users_ids, tweets_per_user=20000, push_to_remote=True): topic_domains = load_topic_domains(f'{directory}topic_domains.pickle') topic_entities = load_topic_entities(f'{directory}topic_entities.pickle') # List where we accumulate the tweets retrieved so far viral_users_tweets = [] # Number of users processed so far users_processed = 0 filename = f"tweets/{users_ids.id[0]}-to-" try: for user_id in tqdm(users_ids.id): for tweet in Paginator(twitter_client.get_users_tweets, id=user_id, tweet_fields=TWEET_FIELDS, exclude="retweets").flatten(limit=tweets_per_user): processed_tweet, tweet_topic_domains, tweet_topic_entities = format_context_annotations(tweet.data) viral_users_tweets.append(processed_tweet) topic_domains.update(tweet_topic_domains) topic_entities.update(tweet_topic_entities) users_processed += 1 except TooManyRequests: # Reached API limit print("Hit Rate Limit") finally: # Dump all to parquet and keep track at which user we stopped. if len(viral_users_tweets) > 0: # Append end user id for this iteration to end of filename filename += f"{user_id}.parquet.gzip" filepath = directory + filename os.makedirs(os.path.dirname(filepath), exist_ok=True) format_tweets_df(viral_users_tweets).to_parquet(filepath, compression="gzip", index=False) # Save the topics encountered so far as pickle file with open(f'{directory}topic_domains.pickle', 'wb') as handle: pickle.dump(topic_domains, handle, protocol=pickle.HIGHEST_PROTOCOL) with open(f'{directory}topic_entities.pickle', 'wb') as handle: pickle.dump(topic_entities, handle, protocol=pickle.HIGHEST_PROTOCOL) # Update the users ids to remove the ones already processed users_ids[users_processed:].to_csv(f"{directory}{USER_IDS_PATH}", index=False) if (push_to_remote): s3 = boto3.resource("s3") bucket_name = "semester-project-twitter-storage" # Upload to S3 s3.Bucket(bucket_name).upload_file(filepath, filename) else: print("Finished processing users") return def main(): # TODO: Change depending on whether you're executing this script locally or on a remote server (possibly with s3 access) LOCAL = False TWEETS_PER_USER = 4000 if LOCAL: DIRECTORY = "" with open("api_key.yaml", 'rt') as file: secret = yaml.safe_load(file) BEARER_TOKEN = secret['Bearer Token'] PUSH_TO_REMOTE = False else: DIRECTORY="/home/ubuntu/tweet/" BEARER_TOKEN = os.environ["BearerToken"] PUSH_TO_REMOTE = True # Authenticate to Twitter client_wrapper = TwitterClientWrapper(BEARER_TOKEN, wait_on_rate_limit=False) client = client_wrapper.client users_ids = pd.read_csv(f"{DIRECTORY}{USER_IDS_PATH}", dtype={"id": str}) if len(users_ids) != 0: run(client, DIRECTORY, users_ids=users_ids, tweets_per_user=TWEETS_PER_USER, push_to_remote=PUSH_TO_REMOTE) if __name__ == "__main__": main()