File size: 13,878 Bytes
f049087
 
 
 
 
6f47252
f049087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f47252
 
 
 
 
f049087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import torch
from torch import nn
import torch.nn.functional as F
from torch import Tensor
from typing import Optional, List
from timm.models.layers import trunc_normal_


class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


def conv_block(
    din: int,
    dout: int,
    k: int,
    act: nn.Module = nn.Identity,
    depthwise: bool = False,
    bottleneck: bool = False,
    batchnorm: bool = False,
    separable: bool = False,
    batchnorm_type: str = "bn",
    **kwargs
):
    if batchnorm_type == "bn":
        bn_fun = lambda x: nn.BatchNorm2d(x, eps=1e-2)
    elif batchnorm_type == "frn":
        bn_fun = lambda x: FRN(x)
    else:
        raise NotImplementedError(f"batchnorm_type {batchnorm_type} not implemented")

    if not depthwise:
        d1 = din // 4 if bottleneck else din
        kwargs = kwargs.copy()
        kwargs["bias"] = True # (not batchnorm)
        batchnorm = True # (not batchnorm)
        mods = []
        mods.append(nn.Conv2d(d1, dout, k, **kwargs))
        if batchnorm:
            mods.append(bn_fun(dout))
        mods.append(act())
        if bottleneck:
            blayer = [nn.Conv2d(din, din // 4, 1, bias=(not batchnorm))]
            if batchnorm:
                blayer.append(LayerNorm(din // 4, eps=1e-2))
            mods = mods + blayer
    elif separable:
        kwargs = kwargs.copy()
        kwargs2 = kwargs.copy()
        kwargs3 = kwargs.copy()
        kwargs["groups"] = din
        kwargs["padding"] = [0, k//2]
        kwargs["bias"] = True
        kwargs2["groups"] = din
        kwargs2["padding"] = [k//2, 0]
        kwargs2["bias"] = False
        kwargs3["groups"] = 1
        kwargs3["padding"] = 0
        kwargs3["bias"] = (not batchnorm)
        mods = [
            nn.Conv2d(din, din, (1, k), **kwargs),
            nn.Conv2d(din, din, (k, 1), **kwargs2),
            nn.Conv2d(din, dout, 1, **kwargs3),
        ]
        if batchnorm:
            mods.append(bn_fun(dout))
        mods.append(act())
    else:
        kwargs = kwargs.copy()
        kwargs2 = kwargs.copy()
        kwargs["groups"] = din
        kwargs["padding"] = k//2
        kwargs["bias"] = True
        kwargs2["groups"] = 1
        kwargs2["padding"] = 0
        kwargs2["bias"] = True  # 
        mods = [
            nn.Conv2d(din, din, (k, k), **kwargs),
            nn.Conv2d(din, dout, 1, **kwargs2)
        ]
        if batchnorm:
            mods.append(bn_fun(dout))
        mods.append(act())
    mod = nn.Sequential(*mods)
    return mod


class FRN(nn.Module):
    def __init__(self, num_features, eps=1e-6, is_eps_leanable=False):
        """
        weight = gamma, bias = beta
        beta, gamma:
            Variables of shape [1, 1, 1, C]. if TensorFlow
            Variables of shape [1, C, 1, 1]. if PyTorch
        eps: A scalar constant or learnable variable.
        """
        super(FRN, self).__init__()

        self.num_features = num_features
        self.init_eps = eps
        self.is_eps_leanable = is_eps_leanable

        self.weight = nn.parameter.Parameter(
            torch.Tensor(1, num_features, 1, 1), requires_grad=True)
        self.bias = nn.parameter.Parameter(
            torch.Tensor(1, num_features, 1, 1), requires_grad=True)
        if is_eps_leanable:
            self.eps = nn.parameter.Parameter(torch.Tensor(1), requires_grad=True)
        else:
            self.register_buffer('eps', torch.Tensor([eps]))
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.ones_(self.weight)
        nn.init.zeros_(self.bias)
        if self.is_eps_leanable:
            nn.init.constant_(self.eps, self.init_eps)

    def extra_repr(self):
        return 'num_features={num_features}, eps={init_eps}'.format(**self.__dict__)

    def forward(self, x):
        """
        0, 1, 2, 3 -> (B, H, W, C) in TensorFlow
        0, 1, 2, 3 -> (B, C, H, W) in PyTorch
        TensorFlow code
            nu2 = tf.reduce_mean(tf.square(x), axis=[1, 2], keepdims=True)
            x = x * tf.rsqrt(nu2 + tf.abs(eps))
            # This Code include TLU function max(y, tau)
            return tf.maximum(gamma * x + beta, tau)
        """
        # Compute the mean norm of activations per channel.
        nu2 = x.pow(2).mean(dim=[2, 3], keepdim=True)

        # Perform FRN.
        x = x * torch.rsqrt(nu2 + self.eps.abs())

        # Scale and Bias
        x = self.weight * x + self.bias
        return x



class res_layers(nn.Module):
    def __init__(self, d: int, n: int, k: int, act: nn.Module, **kwargs):
        super().__init__()
        kwargs = kwargs.copy()
        self.convs = nn.ModuleList(
            [conv_block(d, d, k, padding=k//2, batchnorm=True, act=nn.Identity) for _ in range(n)]
        )
        self.acts = nn.ModuleList([act() for _ in range(n)])

    def forward(self, inputs: Tensor):
        x = inputs
        for f, act in zip(self.convs, self.acts):
            x = act(f(x) + x)
        return x


def down_layer(d: int, k: int, act: nn.Module, num_res=0, pool=nn.MaxPool2d, **kwargs):
    modules = [
        pool(2, 2, 0), conv_block(d // 2, d, k, act, **kwargs)
    ]
    if num_res > 0:
        modules.append(res_layers(d, num_res, k, act, **kwargs))
    return nn.Sequential(*modules)


class up_layer(nn.Module):
    def __init__(self, d: int, k: int, act: nn.Module, num_res=0, **kwargs):
        super().__init__()
        modules = []
        if num_res > 0:
            modules.append(res_layers(2 * d, num_res, k, act, **kwargs))
        modules.append(nn.UpsamplingBilinear2d(scale_factor=2))
        modules.append(conv_block(2 * d, d, k, act, **kwargs))
        self.net1 = nn.Sequential(*modules)
        self.net2 = conv_block(2 * d, d, k, act, **kwargs)

    def forward(self, x: Tensor, z: Tensor):
        x = self.net1(x)
        x = torch.cat([x, z], 1)
        x = self.net2(x)
        return x


class UNetEncoder(nn.Module):
    def __init__(
        self,
        cin,
        cout,
        ksize=3,
        depth=3,
        num_res=1,
        groups: int = 1,
        n_hidden=16,
        act=nn.SiLU,
        pool='MaxPool2d',
        dropout: bool = False,
        bottleneck: bool = False,
        depthwise: bool = False,
        separable: bool = False,
        batchnorm: bool = False,
        batchnorm_type: str = "bn",
    ) -> None:
        super().__init__()
        self.cin = cin
        self.cout = cout
        self.num_res = num_res
        self.depth = depth
        self.n_hidden = n_hidden
        self.ksize = ksize
        self.groups = groups
        d, k = n_hidden, ksize
        self.act = act
        self.batchnorm = batchnorm
        act = getattr(nn, act) if isinstance(act, str) else act
        pool = getattr(nn, pool)

        kwargs = dict(
            bias=True,
            groups=groups,
            padding=k // 2,
            padding_mode="replicate",
            bottleneck=bottleneck,
            depthwise=depthwise,
            separable=separable,
            batchnorm=batchnorm,
            batchnorm_type=batchnorm_type,
        )

        kwargs1 = kwargs.copy()
        kwargs1["groups"] = 1
        self.first = nn.Sequential(
            nn.Conv2d(cin, d, k, padding=k//2),
            # LayerNorm(d, eps=1e-6),
            FRN(d, eps=1e-2),
            act(),
            # conv_block(cin, d, k, act, **kwargs1),
            res_layers(d, num_res, k, act, **kwargs)
        )

        self.down = nn.ModuleList()
        for _ in range(depth):
            d *= 2
            layer = down_layer(d, k, act, num_res=num_res, pool=pool, **kwargs)
            self.down.append(layer)

        if dropout:
            self.dropout = nn.Dropout2d(0.5)

        self.up = nn.ModuleList()
        for _ in range(depth):
            d //= 2
            layer = up_layer(d, k, act, num_res=num_res, **kwargs)
            self.up.append(layer)

        kwargsf = kwargs.copy()
        kwargsf["groups"] = 1
        self.final = nn.Sequential(
            res_layers(d, num_res, k, act, **kwargs),
            nn.Conv2d(d, cout, k, padding=k//2)
            # conv_block(d, cout, k, **kwargsf)
        )
        self.apply(self._init_weights)

    def forward(self, inputs: Tensor):
        x = inputs
        x = self.first(x)

        # downsampling
        intermediate_outputs = [x]
        for _, fdown in enumerate(self.down):
            x = fdown(x)
            intermediate_outputs.append(x)

        # dropout
        if hasattr(self, "dropout"):
            x = self.dropout(x)

        # upsampling
        for i, fup in enumerate(self.up):
            z = intermediate_outputs[-(i + 2)]
            x = fup(x, z)

        # final layers and desired size
        x = self.final(x)

        return x
    
    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)


class Decoder(nn.Module):
    def __init__(self, din, dout, n_hidden=64, n_res=0, act=nn.SiLU, offset=False, collapse_dims=True, loss_type="mse", fit_sigma: bool = False, **kwargs):
        super().__init__()
        if offset:
            self.spatial_emb = SpatialEmbeddings(din, n_hidden, n_hidden)
        self.din = din
        self.dout = dout
        self.collapse_dims =collapse_dims
        self.hin = n_hidden if offset else din
        self.head = nn.Sequential(
            conv_block(self.hin, n_hidden, 1, act, **kwargs),
            *[conv_block(n_hidden, n_hidden, 1, act, **kwargs) for _ in range(n_res)],
            nn.Conv2d(n_hidden, dout, 1),
        )
        self.loss_type = loss_type
        if loss_type == "mse":
            self.log_sig = nn.Parameter(torch.tensor(0.0), requires_grad=fit_sigma)

        # self.head = conv_block(n_hidden, n_hidden, 1, act, **kwargs)

    def forward_offset(self, latent, offset):
        spatial = self.spatial_emb(offset)
        bs, D, D1 = spatial.shape
        *_, nr, nc = latent.shape
        spatial = spatial.view(bs, D, D1, 1, 1)
        latent = latent.view(bs, D, 1, nr, nc)
        v = (latent * spatial).view(bs, D, D1, nr, nc)
        out = v.sum(1) # .view(1, D, nr, nc)
        out = self.head(out)
        return out

    def forward(self, latent, offset=None):
        if offset is not None:
            out = self.forward_offset(latent, offset)
        else:
            out = self.head(latent)
        if self.collapse_dims:
            out = out.squeeze(1)
        return out

    def loss_binary(
        self,
        tgt: Tensor,
        C: Optional[Tensor] = None,
        M: Optional[Tensor] = None,
    ):
        if M is None:
            M = torch.ones_like(tgt)
        L = self(C)
        if len(L.shape) == 0:
            L = torch.ones_like(tgt) * L
        # L = L.clip(-5.0, 5.0)
        # loss = torch.where(
        #     L >= 0.0,
        #     torch.log(1.0 + torch.exp(-L)) + (1.0 - tgt) * L,
        #     torch.log(1.0 + torch.exp(L)) - tgt * L,
        # )
        loss = F.binary_cross_entropy_with_logits(L, tgt, reduction='none')
        loss = (loss * M).sum() / tgt.shape[0]
        return L, loss
    
    def loss_mse(
        self,
        Y: Tensor,
        C: Optional[Tensor] = None,
        A: Optional[Tensor] = None,
        M: Optional[Tensor] = None,
    ):
        if M is None:
            M = torch.ones_like(Y)
        Yhat = self.forward(C, A) * M
        # return Yhat, 0.0
        sig = (1e-4 + self.log_sig).exp()
        prec = 1.0 / (1e-4 + sig ** 2)
        err = 0.5 * prec * F.mse_loss(Yhat, Y, reduction="none") + self.log_sig
        prior = sig - self.log_sig
        # err = 0.5 * F.mse_loss(Yhat, Y, reduction="none") * M
        loss = ((err * M).sum() + prior)
        # sigerr = F.smooth_l1_loss(mse.detach().m,sqrt(), sig)
        loss = loss  / Y.shape[0]
        return Yhat, loss

    def loss(self, *args, **kwargs):
        if self.loss_type == "binary":
            l = self.loss_binary(*args, **kwargs)
        elif self.loss_type == "mse":
            l = self.loss_mse(*args, **kwargs)
        return l 


class SpatialEmbeddings(nn.Module):
    def __init__(self, dout, nl, n_hidden=64, act=nn.SiLU, n_chunks=1):
        super().__init__()
        self.D = dout
        self.nl = nl
        act = getattr(nn, act) if isinstance(act, str) else act
        self.dec = nn.Sequential(
            nn.Linear(2, n_hidden),
            act(),
            nn.Linear(n_hidden, n_hidden),
            act(),
            nn.Linear(n_hidden, dout * nl),
        )

    def forward(self, inputs):
        u = inputs
        u = (
            [u] #+
            # [torch.sin(u / (1000 ** (2 * k / 12))) for k in range(0, 11, 2)]
            # + [torch.cos(u / (1000 ** (2 * k / 12))) for k in range(0, 11, 2)]
            # [torch.sin(2 * np.pi * u / k) for k in range(1, 12, 2)] +
            # [torch.cos(2 * np.pi * u / k) for k in range(1, 12, 2)]
        )
        u = torch.cat(u, -1)
        out = self.dec(u)
        out = out.view(-1, self.D, self.nl)
        return out