Spaces:
Running
Running
File size: 11,676 Bytes
979b9ef 2752b4d 5e8a806 979b9ef 2752b4d 979b9ef 92a9734 2752b4d 979b9ef 013be0c 979b9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 6 09:56:29 2022
@author: mritchey
"""
#streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\mrms\mrms_hail2 buffer.py"
import plotly.express as px
import os
from PIL import Image
from joblib import Parallel, delayed
import pandas as pd
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
import math
import geopandas as gpd
from skimage.io import imread
from streamlit_plotly_events import plotly_events
import requests
from requests.packages.urllib3.exceptions import InsecureRequestWarning
import rasterio
import rioxarray
import numpy as np
import io
# from urllib import request
# import certifi
# import ssl
# context = ssl.create_default_context(cafile=certifi.where())
# https_handler = request.HTTPSHandler(context=context)
# opener = request.build_opener(https_handler)
# request.install_opener(opener)
@st.cache(allow_output_mutation=True)
def geocode(address, buffer_size):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
df = pd.DataFrame({'Lat': [lat], 'Lon': [lon]})
gdf = gpd.GeoDataFrame(
df, geometry=gpd.points_from_xy(df.Lon, df.Lat, crs=4326))
gdf['buffer'] = gdf['geometry'].to_crs(
3857).buffer(buffer_size/2*2580).to_crs(4326)
return gdf
@st.cache(allow_output_mutation=True)
def get_pngs(date):
year, month, day = date[:4], date[4:6], date[6:]
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
# data = imread(url,verify=False)[:, :, :3]
response = requests.get(url,verify=False)
image_data = io.BytesIO(response.content)
data = imread(image_data)[:, :, :3]
data2 = data.reshape(630*920, 3)
data2_df = pd.DataFrame(data2, columns=['R', 'G', 'B'])
data2_df2 = pd.merge(data2_df, lut[['R', 'G', 'B', 'Hail Scale', 'Hail Scale In']], on=['R', 'G', 'B'],
how='left')[['Hail Scale', 'Hail Scale In']]
data2_df2['Date'] = date
return data2_df2.reset_index()
@st.cache(allow_output_mutation=True)
def get_pngs_parallel(dates):
results1 = Parallel(n_jobs=32, prefer="threads")(
delayed(get_pngs)(i) for i in dates)
return results1
@st.cache(allow_output_mutation=True)
def png_data(date):
year, month, day = date[:4], date[4:6], date[6:]
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
response = requests.get(url,verify=False)
image_data = io.BytesIO(response.content)
data = imread(image_data)
# data = imread(url,verify=False)
return data
@st.cache(allow_output_mutation=True)
def map_folium(data, gdf):
m = folium.Map(location=[lat, lon], zoom_start=zoom, height=300)
folium.Marker(
location=[lat, lon],
popup=address).add_to(m)
folium.GeoJson(gdf['buffer']).add_to(m)
folium.raster_layers.ImageOverlay(
data, opacity=0.8, bounds=bounds).add_to(m)
return m
def to_radians(degrees):
return degrees * math.pi / 180
def lat_lon_to_bounds(lat, lng, zoom, width, height):
earth_cir_m = 40075016.686
degreesPerMeter = 360 / earth_cir_m
m_pixel_ew = earth_cir_m / math.pow(2, zoom + 8)
m_pixel_ns = earth_cir_m / \
math.pow(2, zoom + 8) * math.cos(to_radians(lat))
shift_m_ew = width/2 * m_pixel_ew
shift_m_ns = height/2 * m_pixel_ns
shift_deg_ew = shift_m_ew * degreesPerMeter
shift_deg_ns = shift_m_ns * degreesPerMeter
return [[lat-shift_deg_ns, lng-shift_deg_ew], [lat+shift_deg_ns, lng+shift_deg_ew]]
def image_to_geotiff(bounds, input_file_path, output_file_path='template.tiff'):
south, west, north, east = tuple(
[item for sublist in bounds for item in sublist])
dataset = rasterio.open(input_file_path, 'r')
bands = [1, 2, 3]
data = dataset.read(bands)
transform = rasterio.transform.from_bounds(west, south, east, north,
height=data.shape[1],
width=data.shape[2])
crs = {'init': 'epsg:4326'}
with rasterio.open(output_file_path, 'w', driver='GTiff',
height=data.shape[1],
width=data.shape[2],
count=3, dtype=data.dtype, nodata=0,
transform=transform, crs=crs,
compress='lzw') as dst:
dst.write(data, indexes=bands)
def get_mask(bounds, buffer_size):
year, month, day = date[:4], date[4:6], date[6:]
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
img_data = requests.get(url, verify=False).content
input_file_path = f'image_name_{date}_{var}.png'
output_file_path = 'template.tiff'
with open(input_file_path, 'wb') as handler:
handler.write(img_data)
image_to_geotiff(bounds, input_file_path, output_file_path)
rds = rioxarray.open_rasterio(output_file_path)
# rds.plot.imshow()
rds = rds.assign_coords(distance=(haversine(rds.x, rds.y, lon, lat)))
mask = rds['distance'].values <= buffer_size
mask = np.transpose(np.stack([mask, mask, mask]), (1, 2, 0))
return mask
def haversine(lon1, lat1, lon2, lat2):
# convert decimal degrees to radians
lon1 = np.deg2rad(lon1)
lon2 = np.deg2rad(lon2)
lat1 = np.deg2rad(lat1)
lat2 = np.deg2rad(lat2)
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
r = 6371
return c * r
#Set Columns
st.set_page_config(layout="wide")
col1, col2, col3 = st.columns((3))
col1, col2, col3 = st.columns((3, 3, 1))
#Input Data
zoom = 10
_ = st.sidebar.text_input(
"Claim Number", "836-xxxxxxx")
address = st.sidebar.text_input(
"Address", "1000 Main St, Cincinnati, OH 45202")
date = st.sidebar.date_input("Date", pd.Timestamp(
2022, 7, 6), key='date').strftime('%Y%m%d')
d = pd.Timestamp(date)
days_within = st.sidebar.selectbox('Within Days:', (5, 30, 60, 90, 180))
var = 'Hail'
var_input = 'hails&product=MESHMAX1440M'
mask_select = st.sidebar.radio('Only Show Buffer Data:', ("No", "Yes"))
buffer_size = st.sidebar.radio('Buffer Size (miles):', (5, 10, 15))
year, month, day = date[:4], date[4:6], date[6:]
hour = 23
minute = 30
prod_root = var_input[var_input.find('=')+1:]
#Geocode
gdf = geocode(address, buffer_size)
lat, lon = tuple(gdf[['Lat', 'Lon']].values[0])
#Get Value
url = 'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/get_multi_domain_rect_binary_value.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/'\
+ f'&prod_root={prod_root}&lon={lon}&lat={lat}&year={year}&month={month}&day={day}&hour={hour}&minute={minute}'
response = requests.get(url, verify=False).json()
qvs_values = pd.DataFrame(response, index=[0])[
['qvs_value', 'qvs_units']].values[0]
qvs_value = qvs_values[0]
qvs_unit = qvs_values[1]
#Get PNG Focus
data = png_data(date)
#Legend
legend = Image.open('hail scale3b.png')
#Get PNG Max
start_date, end_date = d - \
pd.Timedelta(days=days_within), d+pd.Timedelta(days=days_within)
dates = pd.date_range(start_date,
end_date).strftime('%Y%m%d')
lut = pd.read_csv('hail scale.csv')
bounds = lat_lon_to_bounds(lat, lon, zoom, 920, 630)
results1 = get_pngs_parallel(dates)
# results1 = Parallel(n_jobs=32, prefer="threads")(delayed(get_pngs)(i) for i in dates)
results = pd.concat(results1)
max_data = results.groupby('index')[['Hail Scale']].max()
max_data2 = pd.merge(max_data,
lut[['R', 'G', 'B', 'Hail Scale']],
on=['Hail Scale'],
how='left')[['R', 'G', 'B']]
data_max = max_data2.values.reshape(630, 920, 3)
#Masked Data
if mask_select == "Yes":
mask = get_mask(bounds, buffer_size)
mask1 = mask[:, :, 0].reshape(630*920)
results = pd.concat([i[mask1] for i in results1])
data_max = data_max*mask
else:
pass
#Bar
bar = results.query("`Hail Scale`>4").groupby(
['Date', 'Hail Scale In'])['index'].count().reset_index()
bar['Date'] = pd.to_datetime(bar['Date'])
bar = bar.reset_index()
bar.columns = ['level_0', 'Date', 'Hail Scale In', 'count']
bar['Hail Scale In'] = bar['Hail Scale In'].astype(str)
bar = bar.sort_values('Hail Scale In', ascending=True)
color_discrete_map = lut[['Hail Scale In', 'c_code']].sort_values(
'Hail Scale In', ascending=True).astype(str)
color_discrete_map = color_discrete_map.set_index(
'Hail Scale In').to_dict()['c_code']
fig = px.bar(bar, x="Date", y="count", color="Hail Scale In",
barmode='stack',
color_discrete_map=color_discrete_map)
#Submit Url to New Tab
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/index.php?web_exec_mode=run&menu=menu_config.txt&year={year}&month={month}&day={day}&hour=23&minute=30&time_mode=static&zoom=9&clon={lon}&clat={lat}&base=0&overlays=1&mping_mode=0&product_type={var_input}&qpe_pal_option=0&opacity=.75&looping_active=off&num_frames=6&frame_step=200&seconds_step=600'
#Map Focus
m = map_folium(data, gdf)
#Map Max
m_max = map_folium(data_max, gdf)
with st.container():
col1, col2, col3 = st.columns((1, 2, 2))
with col1:
link = f'[Go To MRMS Site]({url})'
st.markdown(link, unsafe_allow_html=True)
st.image(legend)
with col2:
st.header(f'{var} on {pd.Timestamp(date).strftime("%D")}')
st_folium(m, height=300)
with col3:
st.header(
f'Max from {start_date.strftime("%D")} to {end_date.strftime("%D")}')
st_folium(m_max, height=300)
try:
selected_points = plotly_events(fig, click_event=True, hover_event=False)
date2 = pd.Timestamp(selected_points[0]['x']).strftime('%Y%m%d')
data2 = png_data(date2)
m3 = map_folium(data2, gdf)
st.header(f'{var} on {pd.Timestamp(date2).strftime("%D")}')
st_folium(m3, height=300)
except:
pass
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)
|