|
from fastai.tabular.all import * |
|
import gradio as gr |
|
import pathlib |
|
plt = platform.system() |
|
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath |
|
|
|
df = pd.read_csv("rookie_year.csv") |
|
learn = load_learner("export.pkl") |
|
columns = ["Name", "G", "GS", "Cmp", "Att", "Yds", "Cmp%", "TD", "Int", "Y/G", "Sk"] |
|
|
|
def predict2(data): |
|
row = data.drop("Name", axis=1).astype(float) |
|
row["Cmp"] = row["Att"].item() * row["Cmp%"].item() |
|
pred_row, clas, probs = learn.predict(row.iloc[0]) |
|
prediction = pred_row.decode()["Tier"].item() |
|
return prediction |
|
|
|
|
|
demo2 = gr.Interface(fn=predict2, |
|
inputs=gr.Dataframe(row_count=1, col_count=8, headers=[x for x in columns if x not in ["Cmp", "G", "GS"]], label="Rookie Year Stats"), |
|
outputs=gr.Textbox(label="Prediction"), |
|
title="Rookie QB Career Prediction (Stats)", |
|
description="Given stats of a presumed rookie QB, predict their career tier. Uses data from https:\/\/www.pro-football-reference.com. Tiers based on PFR Approximate Value.", |
|
article="See more details at https://github.com/mhrice/Rookie-QB-Predictions" |
|
) |
|
|
|
demo2.launch() |