Matthew Rice commited on
Commit
e71753a
·
1 Parent(s): c6dd398

Remove more unecessary files. Restore Data Preprocess

Browse files
Files changed (5) hide show
  1. 01_Data_Preprocess.ipynb +0 -0
  2. 3_Demo.ipynb +9 -7
  3. app.py +31 -0
  4. predict.py +0 -0
  5. train.py +0 -0
01_Data_Preprocess.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
3_Demo.ipynb CHANGED
@@ -23,18 +23,18 @@
23
  "source": [
24
  "path = Path()\n",
25
  "df = pd.read_csv(\"rookie_year.csv\")\n",
26
- "learn = load_learner(path/\"export.pkl\")"
 
27
  ]
28
  },
29
  {
30
  "cell_type": "code",
31
  "execution_count": 64,
32
- "id": "cd8c3ca8",
33
  "metadata": {},
34
  "outputs": [],
35
  "source": [
36
  "def predict(data):\n",
37
- " columns = [\"Name\", \"G\", \"GS\", \"Cmp\", \"Att\", \"Yds\", \"Cmp%\", \"TD\", \"Int\", \"Y/G\", \"Sk\"]\n",
38
  " row = df[df[\"Name\"] == data]\n",
39
  " row = row.loc[:, ~df.columns.str.contains('^Unnamed')]\n",
40
  " if not len(row):\n",
@@ -48,7 +48,7 @@
48
  {
49
  "cell_type": "code",
50
  "execution_count": 81,
51
- "id": "fae5cc55",
52
  "metadata": {},
53
  "outputs": [
54
  {
@@ -92,6 +92,7 @@
92
  " ],\n",
93
  " title=\"Rookie QB Career Prediction (Name)\",\n",
94
  " description=\"Given Name of QB who has played in the NFL, predict their career tier. Uses data from https:\\/\\/www.pro-football-reference.com. Tiers based on PFR Approximate Value.\",\n",
 
95
  " examples=[\"Tom Brady\", \"Joe Burrow\", \"Trevor Lawrence\"]\n",
96
  " )\n",
97
  "\n",
@@ -101,7 +102,7 @@
101
  {
102
  "cell_type": "code",
103
  "execution_count": 72,
104
- "id": "226cfde1",
105
  "metadata": {},
106
  "outputs": [],
107
  "source": [
@@ -116,7 +117,7 @@
116
  {
117
  "cell_type": "code",
118
  "execution_count": 80,
119
- "id": "66f66ad7",
120
  "metadata": {},
121
  "outputs": [
122
  {
@@ -157,6 +158,7 @@
157
  " outputs=gr.Textbox(label=\"Prediction\"),\n",
158
  " title=\"Rookie QB Career Prediction (Stats)\",\n",
159
  " description=\"Given stats of a presumed rookie QB, predict their career tier. Uses data from https:\\/\\/www.pro-football-reference.com. Tiers based on PFR Approximate Value.\"\n",
 
160
  " )\n",
161
  "\n",
162
  "demo2.launch()"
@@ -165,7 +167,7 @@
165
  {
166
  "cell_type": "code",
167
  "execution_count": null,
168
- "id": "d6cf6ff1",
169
  "metadata": {},
170
  "outputs": [],
171
  "source": []
 
23
  "source": [
24
  "path = Path()\n",
25
  "df = pd.read_csv(\"rookie_year.csv\")\n",
26
+ "learn = load_learner(path/\"export.pkl\")\n",
27
+ "columns = [\"Name\", \"G\", \"GS\", \"Cmp\", \"Att\", \"Yds\", \"Cmp%\", \"TD\", \"Int\", \"Y/G\", \"Sk\"]"
28
  ]
29
  },
30
  {
31
  "cell_type": "code",
32
  "execution_count": 64,
33
+ "id": "6e82eaae",
34
  "metadata": {},
35
  "outputs": [],
36
  "source": [
37
  "def predict(data):\n",
 
38
  " row = df[df[\"Name\"] == data]\n",
39
  " row = row.loc[:, ~df.columns.str.contains('^Unnamed')]\n",
40
  " if not len(row):\n",
 
48
  {
49
  "cell_type": "code",
50
  "execution_count": 81,
51
+ "id": "b9242a91",
52
  "metadata": {},
53
  "outputs": [
54
  {
 
92
  " ],\n",
93
  " title=\"Rookie QB Career Prediction (Name)\",\n",
94
  " description=\"Given Name of QB who has played in the NFL, predict their career tier. Uses data from https:\\/\\/www.pro-football-reference.com. Tiers based on PFR Approximate Value.\",\n",
95
+ " article=\"See more details at https://github.com/mhrice/Rookie-QB-Predictions\"\n",
96
  " examples=[\"Tom Brady\", \"Joe Burrow\", \"Trevor Lawrence\"]\n",
97
  " )\n",
98
  "\n",
 
102
  {
103
  "cell_type": "code",
104
  "execution_count": 72,
105
+ "id": "46d819f7",
106
  "metadata": {},
107
  "outputs": [],
108
  "source": [
 
117
  {
118
  "cell_type": "code",
119
  "execution_count": 80,
120
+ "id": "dd0aae3a",
121
  "metadata": {},
122
  "outputs": [
123
  {
 
158
  " outputs=gr.Textbox(label=\"Prediction\"),\n",
159
  " title=\"Rookie QB Career Prediction (Stats)\",\n",
160
  " description=\"Given stats of a presumed rookie QB, predict their career tier. Uses data from https:\\/\\/www.pro-football-reference.com. Tiers based on PFR Approximate Value.\"\n",
161
+ " article=\"See more details at https://github.com/mhrice/Rookie-QB-Predictions\"\n",
162
  " )\n",
163
  "\n",
164
  "demo2.launch()"
 
167
  {
168
  "cell_type": "code",
169
  "execution_count": null,
170
+ "id": "5c7e8cbe",
171
  "metadata": {},
172
  "outputs": [],
173
  "source": []
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastai.tabular.all import *
2
+ import gradio as gr
3
+
4
+ path = Path()
5
+ df = pd.read_csv("rookie_year.csv")
6
+ learn = load_learner(path/"export.pkl")
7
+ columns = ["Name", "G", "GS", "Cmp", "Att", "Yds", "Cmp%", "TD", "Int", "Y/G", "Sk"]
8
+
9
+ def predict(data):
10
+ row = df[df["Name"] == data]
11
+ row = row.loc[:, ~df.columns.str.contains('^Unnamed')]
12
+ if not len(row):
13
+ print("ERROR: No QB in database with this name")
14
+ return
15
+ pred_row, clas, probs = learn.predict(row.iloc[0])
16
+ prediction = pred_row.decode()["Tier"].item()
17
+ return row[columns], prediction
18
+
19
+ demo = gr.Interface(fn=predict,
20
+ inputs="text",
21
+ outputs=[
22
+ gr.Dataframe(row_count=1, col_count=11, headers=columns, label="Rookie Year Stats"),
23
+ gr.Textbox(label="Prediction")
24
+ ],
25
+ title="Rookie QB Career Prediction (Name)",
26
+ description="Given Name of QB who has played in the NFL, predict their career tier. Uses data from https:\/\/www.pro-football-reference.com. Tiers based on PFR Approximate Value.",
27
+ article="See more details at https://github.com/mhrice/Rookie-QB-Predictions"
28
+ examples=["Tom Brady", "Joe Burrow", "Trevor Lawrence"]
29
+ )
30
+
31
+ demo.launch()
predict.py DELETED
File without changes
train.py DELETED
File without changes