defaults: - _self_ - model: null - effects: null seed: 12345 train: True sample_rate: 48000 logs_dir: "./logs" log_every_n_steps: 1000 render_files: True callbacks: model_checkpoint: _target_: pytorch_lightning.callbacks.ModelCheckpoint monitor: "valid_loss" # name of the logged metric which determines when model is improving save_top_k: 1 # save k best models (determined by above metric) save_last: True # additionaly always save model from last epoch mode: "min" # can be "max" or "min" verbose: False dirpath: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S} filename: '{epoch:02d}-{valid_loss:.3f}' datamodule: _target_: remfx.datasets.VocalSetDatamodule train_dataset: _target_: remfx.datasets.VocalSet sample_rate: ${sample_rate} root: ${oc.env:DATASET_ROOT} chunk_size_in_sec: 6 mode: "train" effect_types: ${effects.train_effects} render_files: ${render_files} val_dataset: _target_: remfx.datasets.VocalSet sample_rate: ${sample_rate} root: ${oc.env:DATASET_ROOT} chunk_size_in_sec: 6 mode: "val" effect_types: ${effects.val_effects} render_files: ${render_files} test_dataset: _target_: remfx.datasets.VocalSet sample_rate: ${sample_rate} root: ${oc.env:DATASET_ROOT} chunk_size_in_sec: 6 mode: "test" effect_types: ${effects.val_effects} render_files: ${render_files} batch_size: 16 num_workers: 8 pin_memory: True persistent_workers: True logger: _target_: pytorch_lightning.loggers.WandbLogger project: ${oc.env:WANDB_PROJECT} entity: ${oc.env:WANDB_ENTITY} # offline: False # set True to store all logs only locally job_type: "train" group: "" save_dir: "." trainer: _target_: pytorch_lightning.Trainer precision: 32 # Precision used for tensors, default `32` min_epochs: 0 max_epochs: -1 enable_model_summary: False log_every_n_steps: 1 # Logs metrics every N batches accumulate_grad_batches: 1 accelerator: null devices: 1