Spaces:
Runtime error
Runtime error
import logging | |
from typing import List, Tuple | |
import pytorch_lightning as pl | |
from omegaconf import DictConfig | |
from pytorch_lightning.utilities import rank_zero_only | |
import torch | |
import torchaudio | |
from torch import nn | |
import collections.abc | |
def get_logger(name=__name__) -> logging.Logger: | |
"""Initializes multi-GPU-friendly python command line logger.""" | |
logger = logging.getLogger(name) | |
# this ensures all logging levels get marked with the rank zero decorator | |
# otherwise logs would get multiplied for each GPU process in multi-GPU setup | |
for level in ( | |
"debug", | |
"info", | |
"warning", | |
"error", | |
"exception", | |
"fatal", | |
"critical", | |
): | |
setattr(logger, level, rank_zero_only(getattr(logger, level))) | |
return logger | |
log = get_logger(__name__) | |
def log_hyperparameters( | |
config: DictConfig, | |
model: pl.LightningModule, | |
datamodule: pl.LightningDataModule, | |
trainer: pl.Trainer, | |
callbacks: List[pl.Callback], | |
logger: pl.loggers.logger.Logger, | |
) -> None: | |
"""Controls which config parts are saved by Lightning loggers. | |
Additionaly saves: | |
- number of model parameters | |
""" | |
if not trainer.logger: | |
return | |
hparams = {} | |
# choose which parts of hydra config will be saved to loggers | |
hparams["model"] = config["model"] | |
# save number of model parameters | |
hparams["model/params/total"] = sum(p.numel() for p in model.parameters()) | |
hparams["model/params/trainable"] = sum( | |
p.numel() for p in model.parameters() if p.requires_grad | |
) | |
hparams["model/params/non_trainable"] = sum( | |
p.numel() for p in model.parameters() if not p.requires_grad | |
) | |
hparams["datamodule"] = config["datamodule"] | |
hparams["trainer"] = config["trainer"] | |
if "seed" in config: | |
hparams["seed"] = config["seed"] | |
if "callbacks" in config: | |
hparams["callbacks"] = config["callbacks"] | |
if isinstance(logger, pl.loggers.CSVLogger): | |
logger.log_hyperparams(hparams) | |
else: | |
logger.experiment.config.update(hparams) | |
def create_random_chunks( | |
audio_file: str, chunk_size: int, num_chunks: int | |
) -> Tuple[List[Tuple[int, int]], int]: | |
"""Create num_chunks random chunks of size chunk_size (seconds) | |
from an audio file. | |
Return sample_index of start of each chunk and original sr | |
""" | |
audio, sr = torchaudio.load(audio_file) | |
chunk_size_in_samples = chunk_size * sr | |
if chunk_size_in_samples >= audio.shape[-1]: | |
chunk_size_in_samples = audio.shape[-1] - 1 | |
chunks = [] | |
for i in range(num_chunks): | |
start = torch.randint(0, audio.shape[-1] - chunk_size_in_samples, (1,)).item() | |
chunks.append(start) | |
return chunks, sr | |
def create_sequential_chunks( | |
audio_file: str, chunk_size: int, sample_rate: int | |
) -> List[torch.Tensor]: | |
"""Create sequential chunks of size chunk_size from an audio file. | |
Return each chunk | |
""" | |
chunks = [] | |
audio, sr = torchaudio.load(audio_file) | |
chunk_starts = torch.arange(0, audio.shape[-1], chunk_size) | |
for start in chunk_starts: | |
if start + chunk_size > audio.shape[-1]: | |
break | |
chunk = audio[:, start : start + chunk_size] | |
resampled_chunk = torchaudio.functional.resample(chunk, sr, sample_rate) | |
# Skip chunks that are too short | |
if resampled_chunk.shape[-1] < chunk_size: | |
continue | |
chunks.append(chunk) | |
return chunks | |
def select_random_chunk( | |
audio_file: str, chunk_size: int, sample_rate: int | |
) -> List[torch.Tensor]: | |
"""Select random chunk of size chunk_size (samples) from an audio file.""" | |
audio, sr = torchaudio.load(audio_file) | |
new_chunk_size = int(chunk_size * (sr / sample_rate)) | |
if new_chunk_size >= audio.shape[-1]: | |
return None | |
max_len = audio.shape[-1] - new_chunk_size | |
random_start = torch.randint(0, max_len, (1,)).item() | |
chunk = audio[:, random_start : random_start + new_chunk_size] | |
# Skip if energy too low | |
if torch.mean(torch.abs(chunk)) < 1e-4: | |
return None | |
resampled_chunk = torchaudio.functional.resample(chunk, sr, sample_rate) | |
return resampled_chunk | |
def spectrogram( | |
x: torch.Tensor, | |
window: torch.Tensor, | |
n_fft: int, | |
hop_length: int, | |
alpha: float, | |
) -> torch.Tensor: | |
bs, chs, samp = x.size() | |
x = x.view(bs * chs, -1) # move channels onto batch dim | |
X = torch.stft( | |
x, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
window=window, | |
return_complex=True, | |
) | |
# move channels back | |
X = X.view(bs, chs, X.shape[-2], X.shape[-1]) | |
return torch.pow(X.abs() + 1e-8, alpha) | |
def init_layer(layer): | |
"""Initialize a Linear or Convolutional layer.""" | |
nn.init.xavier_uniform_(layer.weight) | |
if hasattr(layer, "bias"): | |
if layer.bias is not None: | |
layer.bias.data.fill_(0.0) | |
def init_bn(bn): | |
"""Initialize a Batchnorm layer.""" | |
bn.bias.data.fill_(0.0) | |
bn.weight.data.fill_(1.0) | |
def _ntuple(n: int): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return tuple([x] * n) | |
return parse | |
single = _ntuple(1) | |
def concat_complex(a: torch.tensor, b: torch.tensor, dim: int = 1) -> torch.tensor: | |
""" | |
Concatenate two complex tensors in same dimension concept | |
:param a: complex tensor | |
:param b: another complex tensor | |
:param dim: target dimension | |
:return: concatenated tensor | |
""" | |
a_real, a_img = a.chunk(2, dim) | |
b_real, b_img = b.chunk(2, dim) | |
return torch.cat([a_real, b_real, a_img, b_img], dim=dim) | |
def center_crop(x, length: int): | |
start = (x.shape[-1] - length) // 2 | |
stop = start + length | |
return x[..., start:stop] | |
def causal_crop(x, length: int): | |
stop = x.shape[-1] - 1 | |
start = stop - length | |
return x[..., start:stop] | |