RemFx / datasets.py
mattricesound's picture
Refactor to use hydra
a89496d
raw
history blame
3.63 kB
from torch.utils.data import Dataset, DataLoader, random_split
import torchaudio
import torchaudio.transforms as T
import torch.nn.functional as F
from pathlib import Path
import pytorch_lightning as pl
from typing import Any, List
# https://zenodo.org/record/7044411/
LENGTH = 2**18 # 12 seconds
ORIG_SR = 48000
class GuitarFXDataset(Dataset):
def __init__(
self,
root: str,
sample_rate: int,
length: int = LENGTH,
effect_types: List[str] = None,
):
self.length = length
self.wet_files = []
self.dry_files = []
self.labels = []
self.root = Path(root)
if effect_types is None:
effect_types = [
d.name for d in self.root.iterdir() if d.is_dir() and d != "Clean"
]
for i, effect in enumerate(effect_types):
for pickup in Path(self.root / effect).iterdir():
self.wet_files += sorted(list(pickup.glob("*.wav")))
self.dry_files += sorted(
list(self.root.glob(f"Clean/{pickup.name}/**/*.wav"))
)
self.labels += [i] * len(self.wet_files)
print(
f"Found {len(self.wet_files)} wet files and {len(self.dry_files)} dry files"
)
self.resampler = T.Resample(ORIG_SR, sample_rate)
def __len__(self):
return len(self.dry_files)
def __getitem__(self, idx):
x, sr = torchaudio.load(self.wet_files[idx])
y, sr = torchaudio.load(self.dry_files[idx])
effect_label = self.labels[idx]
resampled_x = self.resampler(x)
resampled_y = self.resampler(y)
# Pad or crop to length
if resampled_x.shape[-1] < self.length:
resampled_x = F.pad(resampled_x, (0, self.length - resampled_x.shape[1]))
elif resampled_x.shape[-1] > self.length:
resampled_x = resampled_x[:, : self.length]
if resampled_y.shape[-1] < self.length:
resampled_y = F.pad(resampled_y, (0, self.length - resampled_y.shape[1]))
elif resampled_y.shape[-1] > self.length:
resampled_y = resampled_y[:, : self.length]
return (resampled_x, resampled_y, effect_label)
class Datamodule(pl.LightningDataModule):
def __init__(
self,
dataset,
*,
val_split: float,
batch_size: int,
num_workers: int,
pin_memory: bool = False,
**kwargs: int,
) -> None:
super().__init__()
self.dataset = dataset
self.val_split = val_split
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.data_train: Any = None
self.data_val: Any = None
def setup(self, stage: Any = None) -> None:
split = [1.0 - self.val_split, self.val_split]
train_size = int(split[0] * len(self.dataset))
val_size = int(split[1] * len(self.dataset))
self.data_train, self.data_val = random_split(
self.dataset, [train_size, val_size]
)
def train_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.data_train,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=True,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.data_val,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)