Spaces:
Runtime error
Runtime error
File size: 8,907 Bytes
d254115 d8f7979 d254115 3c4fcfb d254115 3c4fcfb d254115 3c4fcfb d254115 3c4fcfb d254115 29f23c3 d8f7979 d254115 3c4fcfb d254115 29f23c3 568c3f1 d254115 d8f7979 d254115 568c3f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import torch
import torchaudio
import torch.nn as nn
import hearbaseline
import hearbaseline.vggish
import hearbaseline.wav2vec2
import wav2clip_hear
import panns_hear
import torch.nn.functional as F
from remfx.utils import init_bn, init_layer
class PANNs(torch.nn.Module):
def __init__(
self, num_classes: int, sample_rate: float, hidden_dim: int = 256
) -> None:
super().__init__()
self.num_classes = num_classes
self.model = panns_hear.load_model("hear2021-panns_hear.pth")
self.resample = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=32000
)
self.proj = torch.nn.Sequential(
torch.nn.Linear(2048, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, num_classes),
)
def forward(self, x: torch.Tensor, **kwargs):
with torch.no_grad():
x = self.resample(x)
embed = panns_hear.get_scene_embeddings(x.view(x.shape[0], -1), self.model)
return self.proj(embed)
class Wav2CLIP(nn.Module):
def __init__(
self,
num_classes: int,
sample_rate: float,
hidden_dim: int = 256,
) -> None:
super().__init__()
self.num_classes = num_classes
self.model = wav2clip_hear.load_model("")
self.resample = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)
self.proj = torch.nn.Sequential(
torch.nn.Linear(512, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, num_classes),
)
def forward(self, x: torch.Tensor, **kwargs):
with torch.no_grad():
x = self.resample(x)
embed = wav2clip_hear.get_scene_embeddings(
x.view(x.shape[0], -1), self.model
)
return self.proj(embed)
class VGGish(nn.Module):
def __init__(
self,
num_classes: int,
sample_rate: float,
hidden_dim: int = 256,
):
super().__init__()
self.num_classes = num_classes
self.resample = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)
self.model = hearbaseline.vggish.load_model()
self.proj = torch.nn.Sequential(
torch.nn.Linear(128, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, num_classes),
)
def forward(self, x: torch.Tensor, **kwargs):
with torch.no_grad():
x = self.resample(x)
embed = hearbaseline.vggish.get_scene_embeddings(
x.view(x.shape[0], -1), self.model
)
return self.proj(embed)
class wav2vec2(nn.Module):
def __init__(
self,
num_classes: int,
sample_rate: float,
hidden_dim: int = 256,
):
super().__init__()
self.num_classes = num_classes
self.resample = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)
self.model = hearbaseline.wav2vec2.load_model()
self.proj = torch.nn.Sequential(
torch.nn.Linear(1024, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, num_classes),
)
def forward(self, x: torch.Tensor, **kwargs):
with torch.no_grad():
x = self.resample(x)
embed = hearbaseline.wav2vec2.get_scene_embeddings(
x.view(x.shape[0], -1), self.model
)
return self.proj(embed)
# adapted from https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/models.py
class Cnn14(nn.Module):
def __init__(
self,
num_classes: int,
sample_rate: float,
model_sample_rate: float,
n_fft: int = 1024,
hop_length: int = 256,
n_mels: int = 128,
specaugment: bool = False,
):
super().__init__()
self.num_classes = num_classes
self.n_fft = n_fft
self.hop_length = hop_length
self.sample_rate = sample_rate
self.model_sample_rate = model_sample_rate
self.specaugment = specaugment
window = torch.hann_window(n_fft)
self.register_buffer("window", window)
self.melspec = torchaudio.transforms.MelSpectrogram(
model_sample_rate,
n_fft,
hop_length=hop_length,
n_mels=n_mels,
)
self.bn0 = nn.BatchNorm2d(n_mels)
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
self.fc1 = nn.Linear(2048, 2048, bias=True)
self.heads = torch.nn.ModuleList()
for _ in range(num_classes):
self.heads.append(nn.Linear(2048, 1, bias=True))
self.init_weight()
if sample_rate != model_sample_rate:
self.resample = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=model_sample_rate
)
if self.specaugment:
self.freq_mask = torchaudio.transforms.FrequencyMasking(64, True)
self.time_mask = torchaudio.transforms.TimeMasking(128, True)
def init_weight(self):
init_bn(self.bn0)
init_layer(self.fc1)
def forward(self, x: torch.Tensor, train: bool = False):
"""
Input: (batch_size, data_length)"""
if self.sample_rate != self.model_sample_rate:
x = self.resample(x)
x = self.melspec(x)
if self.specaugment and train:
x = self.freq_mask(x)
x = self.time_mask(x)
# apply standardization
x = (x - x.mean(dim=(2, 3), keepdim=True)) / x.std(dim=(2, 3), keepdim=True)
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
x = F.dropout(x, p=0.2, training=train)
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
x = F.dropout(x, p=0.2, training=train)
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
x = F.dropout(x, p=0.2, training=train)
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
x = F.dropout(x, p=0.2, training=train)
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
x = F.dropout(x, p=0.2, training=train)
x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
x = F.dropout(x, p=0.2, training=train)
x = torch.mean(x, dim=3)
(x1, _) = torch.max(x, dim=2)
x2 = torch.mean(x, dim=2)
x = x1 + x2
x = F.dropout(x, p=0.5, training=train)
x = F.relu_(self.fc1(x))
outputs = []
for head in self.heads:
outputs.append(torch.sigmoid(head(x)))
return outputs
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
)
self.conv2 = nn.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.init_weight()
def init_weight(self):
init_layer(self.conv1)
init_layer(self.conv2)
init_bn(self.bn1)
init_bn(self.bn2)
def forward(self, input, pool_size=(2, 2), pool_type="avg"):
x = input
x = F.relu_(self.bn1(self.conv1(x)))
x = F.relu_(self.bn2(self.conv2(x)))
if pool_type == "max":
x = F.max_pool2d(x, kernel_size=pool_size)
elif pool_type == "avg":
x = F.avg_pool2d(x, kernel_size=pool_size)
elif pool_type == "avg+max":
x1 = F.avg_pool2d(x, kernel_size=pool_size)
x2 = F.max_pool2d(x, kernel_size=pool_size)
x = x1 + x2
else:
raise Exception("Incorrect argument!")
return x
|