Spaces:
Runtime error
Runtime error
File size: 2,047 Bytes
a89496d 7bb4fe3 a89496d ccecb22 a89496d 8125531 a89496d e0a5f6f a89496d e3f4ef0 e0a5f6f 7bb4fe3 8125531 e0a5f6f 7bb4fe3 8125531 a89496d 78820af a89496d 9589cd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
defaults:
- _self_
- model: null
- effects: null
seed: 12345
train: True
sample_rate: 48000
logs_dir: "./logs"
log_every_n_steps: 1000
render_files: True
callbacks:
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: "valid_loss" # name of the logged metric which determines when model is improving
save_top_k: 1 # save k best models (determined by above metric)
save_last: True # additionaly always save model from last epoch
mode: "min" # can be "max" or "min"
verbose: False
dirpath: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S}
filename: '{epoch:02d}-{valid_loss:.3f}'
datamodule:
_target_: remfx.datasets.VocalSetDatamodule
train_dataset:
_target_: remfx.datasets.VocalSet
sample_rate: ${sample_rate}
root: ${oc.env:DATASET_ROOT}
chunk_size_in_sec: 6
mode: "train"
effect_types: ${effects.train_effects}
render_files: ${render_files}
val_dataset:
_target_: remfx.datasets.VocalSet
sample_rate: ${sample_rate}
root: ${oc.env:DATASET_ROOT}
chunk_size_in_sec: 6
mode: "val"
effect_types: ${effects.val_effects}
render_files: ${render_files}
test_dataset:
_target_: remfx.datasets.VocalSet
sample_rate: ${sample_rate}
root: ${oc.env:DATASET_ROOT}
chunk_size_in_sec: 6
mode: "test"
effect_types: ${effects.val_effects}
render_files: ${render_files}
batch_size: 16
num_workers: 8
pin_memory: True
persistent_workers: True
logger:
_target_: pytorch_lightning.loggers.WandbLogger
project: ${oc.env:WANDB_PROJECT}
entity: ${oc.env:WANDB_ENTITY}
# offline: False # set True to store all logs only locally
job_type: "train"
group: ""
save_dir: "."
trainer:
_target_: pytorch_lightning.Trainer
precision: 32 # Precision used for tensors, default `32`
min_epochs: 0
max_epochs: -1
enable_model_summary: False
log_every_n_steps: 1 # Logs metrics every N batches
accumulate_grad_batches: 1
accelerator: null
devices: 1
|