File size: 4,357 Bytes
7d6f241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torchaudio
import torch.nn as nn
import torch.nn.functional as F
from utils import init_bn, init_layer

# adapted from https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/models.py


class Cnn14(nn.Module):
    def __init__(
        self,
        num_classes: int,
        sample_rate: float,
        n_fft: int = 2048,
        hop_length: int = 512,
        n_mels: int = 128,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.n_fft = n_fft
        self.hop_length = hop_length

        window = torch.hann_window(n_fft)
        self.register_buffer("window", window)

        self.melspec = torchaudio.transforms.MelSpectrogram(
            sample_rate,
            n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
        )

        self.bn0 = nn.BatchNorm2d(n_mels)

        self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
        self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
        self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
        self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
        self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
        self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)

        self.fc1 = nn.Linear(2048, 2048, bias=True)
        self.fc_audioset = nn.Linear(2048, num_classes, bias=True)

        self.init_weight()

    def init_weight(self):
        init_bn(self.bn0)
        init_layer(self.fc1)
        init_layer(self.fc_audioset)

    def forward(self, x: torch.Tensor):
        """
        Input: (batch_size, data_length)"""

        x = self.melspec(x)
        x = x.permute(0, 2, 1, 3)
        x = self.bn0(x)
        x = x.permute(0, 2, 1, 3)

        if self.training:
            pass
            # x = self.spec_augmenter(x)

        x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
        x = F.dropout(x, p=0.2, training=self.training)
        x = torch.mean(x, dim=3)

        (x1, _) = torch.max(x, dim=2)
        x2 = torch.mean(x, dim=2)
        x = x1 + x2
        x = F.dropout(x, p=0.5, training=self.training)
        x = F.relu_(self.fc1(x))
        clipwise_output = self.fc_audioset(x)

        return clipwise_output


class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ConvBlock, self).__init__()

        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.conv2 = nn.Conv2d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.init_weight()

    def init_weight(self):
        init_layer(self.conv1)
        init_layer(self.conv2)
        init_bn(self.bn1)
        init_bn(self.bn2)

    def forward(self, input, pool_size=(2, 2), pool_type="avg"):
        x = input
        x = F.relu_(self.bn1(self.conv1(x)))
        x = F.relu_(self.bn2(self.conv2(x)))
        if pool_type == "max":
            x = F.max_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg":
            x = F.avg_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg+max":
            x1 = F.avg_pool2d(x, kernel_size=pool_size)
            x2 = F.max_pool2d(x, kernel_size=pool_size)
            x = x1 + x2
        else:
            raise Exception("Incorrect argument!")

        return x