import fastapi import json import markdown import uvicorn from fastapi.responses import HTMLResponse from fastapi.middleware.cors import CORSMiddleware from sse_starlette.sse import EventSourceResponse from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from ctransformers import AutoModelForCausalLM from pydantic import BaseModel config = {"max_seq_len": 4096} llm = AutoModelForCausalLM.from_pretrained('TheBloke/MPT-7B-Storywriter-GGML', model_file='mpt-7b-storywriter.ggmlv3.q4_0.bin', model_type='mpt') app = fastapi.FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/") async def index(): with open("README.md", "r", encoding="utf-8") as readme_file: md_template_string = readme_file.read() html_content = markdown.markdown(md_template_string) return HTMLResponse(content=html_content, status_code=200) class ChatCompletionRequest(BaseModel): prompt: str @app.post("/v1/chat/completions") async def chat(request: ChatCompletionRequest, response_mode=None): completion = llm(request.prompt) async def server_sent_events(chat_chunks): for chat_chunk in chat_chunks: yield dict(data=json.dumps(chat_chunk)) yield dict(data="[DONE]") return EventSourceResponse(server_sent_events(completion)) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)