File size: 490 Bytes
0734723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr

from transformers import pipeline

classifier = pipeline("text-classification", model="matthewburke/korean_sentiment")

def predict(text):
  result = classifier(text, return_all_scores=True)[0]
  positive_score = result[1]['score']
  negative_score = result[0]['score']
  return {"positive": positive_score, "negative": negative_score}

iface = gr.Interface(
  fn=predict, 
  inputs='text',
  outputs='label',
  examples=[["μ˜ν™”κ°€ μž¬λ°Œμ—ˆλ‹€"]]
)

iface.launch()