File size: 5,974 Bytes
8d691c3
 
 
 
b79e3f7
19d8964
 
421fe99
5b3343a
8d691c3
a15d459
166d9fd
 
a617b97
e221206
fce1ba1
a15d459
42b1e2e
 
 
5b3343a
 
a15d459
8d691c3
21e5fc0
8d691c3
b79e3f7
ae0e195
 
 
 
 
 
8d691c3
 
 
 
 
 
19d8964
8d691c3
ae0e195
714fad0
ae0e195
4f3b0cb
8d691c3
 
 
 
a617b97
 
 
 
 
 
 
 
 
21e5fc0
8d691c3
db8ace2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099a349
db8ace2
099a349
db8ace2
099a349
6df2860
 
 
1bd4c24
 
 
9853e8c
6df2860
 
 
 
1bd4c24
6df2860
 
 
 
 
21e5fc0
 
 
 
 
166d9fd
 
6df2860
 
 
 
e221206
6df2860
 
ae0e195
 
 
 
 
 
 
b3b3df1
fd4ed34
 
 
06b92a6
4daf755
fd4ed34
b3b3df1
 
fd4ed34
 
 
 
21e5fc0
8d691c3
 
 
 
 
 
30beb50
 
 
 
8bf5da3
 
 
8d691c3
 
871938d
 
 
 
30beb50
8749689
21e5fc0
f599c40
db8ace2
36abcb2
 
db8ace2
871938d
36abcb2
fd7010a
8d691c3
c9fbf9f
5097863
1b9a64c
db8ace2
099a349
66303da
21e5fc0
 
 
 
 
36abcb2
fd4ed34
36abcb2
871938d
 
8d691c3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import numpy as np
import random

import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
from diffusers import FluxControlPipeline
from controlnet_aux import CannyDetector
from huggingface_hub import login
import torch
import subprocess
from groq import Groq
import base64
from io import BytesIO
import os
from PIL import Image

from google import genai
from google.genai import types

login(token=os.environ.get("HF_API_KEY"))

subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)

# Load FLUX image generator
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "black-forest-labs/FLUX.1-schnell"  # Replace to the model you would like to use
flat_lora_path = "matteomarjanovic/flatsketcher"
canny_lora_path = "black-forest-labs/FLUX.1-Canny-dev-lora"
flat_weigths_file = "lora.safetensors"
canny_weigths_file = "flux1-canny-dev-lora.safetensors"

processor = CannyDetector()

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = FluxControlPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
pipe.load_lora_weights(flat_lora_path, weight_name=flat_weigths_file, adapter_name="flat")
pipe.load_lora_weights(canny_lora_path, weight_name=canny_weigths_file, adapter_name="canny")

pipe.set_adapters(["flat", "canny"], adapter_weights=[0.8, 0.4])

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# def encode_image(image_path):
#   with open(image_path, "rb") as image_file:
#     return base64.b64encode(image_file.read()).decode('utf-8')

def encode_image(pil_image):
    # Convert PIL image to bytes
    buffered = BytesIO()
    pil_image.save(buffered, format=pil_image.format or "PNG")
    return base64.b64encode(buffered.getvalue()).decode('utf-8')


# @spaces.GPU #[uncomment to use ZeroGPU]
# def infer(
#     prompt,
#     progress=gr.Progress(track_tqdm=True),
# ):
#     # seed = random.randint(0, MAX_SEED)

#     # generator = torch.Generator().manual_seed(seed)

#     image = pipe(
#         prompt=prompt,
#         guidance_scale=0.,
#         num_inference_steps=4,
#         width=1420,
#         height=1080,
#         max_sequence_length=256,
        
#     ).images[0]

#     return image

description_prompt = """
    I want you to imagine how the technical flat sketch of the garment you see in the picture would look like, and describe it in rich details, in one paragraph.
    Don't add any additional comment.
    Specify that the flat sketch is black and white (even if the original garment has a color) and that it doesn't include the person that wear the garment.
    Clarify that  it's not made on a paper sheet, but it's digitally made, so it has plain white background, not paper.
    Describe only the part that is visible in the picture (front or back of the garment, not both).
    It should start with "The technical flat sketch of..."


    The style of the result should look somewhat like the following example:
    The technical flat sketch of the dress depicts a midi-length, off-the-shoulder design with a smocked bodice and short puff sleeves that have elasticized cuffs.
    The elastic neckline sits straight across the chest, ensuring a secure fit.
    The bodice transitions into a flowy, tiered skirt with three evenly spaced gathered panels, creating soft volume.
    Elasticized areas are marked with textured lines, while the gathers and drape is indicated through subtle curved strokes, ensuring clarity in construction details.
    The flat sketch does NOT include any person and it's only the in black and white, being a technical drawing.
"""

@spaces.GPU #[uncomment to use ZeroGPU]
def generate_description_fn(
    image,
    progress=gr.Progress(track_tqdm=True),
):
    base64_image = encode_image(image)

    client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
    response = client.models.generate_content(
        model="gemini-2.0-flash",
        contents=[description_prompt, image]
    )
    prompt = response.text + " In the style of FLTSKC"
    
    control_image = processor(
        image,
        low_threshold=50,
        high_threshold=200,
        detect_resolution=1024,
        image_resolution=1024
    )
    width, height = control_image.size

    image = pipe(
        prompt=prompt,
        control_image=control_image,
        guidance_scale=3.,
        num_inference_steps=4,
        width=width,
        height=height,
        max_sequence_length=256,
    ).images[0]

    return prompt, image


css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
.gradio-container {
    background-color: oklch(98% 0 0);
}
.btn-primary {
    background-color: #422ad5;
    outline-color: #422ad5;
}
"""

def load_image():
    image_path = "hoodie.png"
    default_img = Image.open(image_path)
    return default_img

# generated_prompt = ""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    # gr.Markdown("# Draptic: from garment image to technical flat sketch")
    with gr.Row():
        with gr.Column(elem_id="col-input-image"):
            # gr.Markdown(" ## Drop your image here")
            input_image = gr.Image(type="pil", sources=["upload", "clipboard"])
        with gr.Column(elem_id="col-container"):
            generate_button = gr.Button("Generate flat sketch", scale=0, variant="primary", elem_classes="btn btn-primary")

            result = gr.Image(label="Result", show_label=False)

            if result:
                gr.Markdown("## Description of the garment:")
            generated_prompt = gr.Markdown("")

        gr.on(
            triggers=[generate_button.click],
            fn=generate_description_fn,
            inputs=[
                input_image,
            ],
            outputs=[generated_prompt, result],
        )
    
    demo.load(load_image, inputs=[], outputs=[input_image])

if __name__ == "__main__":
    demo.launch()