Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import re
|
4 |
from rapidfuzz import process, fuzz
|
|
|
5 |
|
6 |
-
# Load dataset once
|
7 |
DF = pd.read_csv("./food_purine_mcp_ready_v2.csv")
|
8 |
-
STOPWORDS = {
|
9 |
-
|
10 |
-
"steamed", "grilled", "ground", "unspecified", "dried",
|
11 |
-
}
|
12 |
-
# ---------- MCP Tools -------------------------------------------------
|
13 |
def _meaningful_tokens(text: str):
|
14 |
-
"""lower-cases and drops stop-words & punctuation."""
|
15 |
words = re.split(r"\W+", text.lower())
|
16 |
return [w for w in words if w and w not in STOPWORDS]
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"""
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"""
|
|
|
25 |
# direct substring hits (best precision, no scoring needed)
|
26 |
mask = DF["food"].str.contains(query, case=False, regex=False)
|
27 |
direct = DF[mask]
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from rapidfuzz import process, fuzz
|
3 |
+
import pandas as pd, re
|
4 |
|
|
|
5 |
DF = pd.read_csv("./food_purine_mcp_ready_v2.csv")
|
6 |
+
STOPWORDS = {...}
|
7 |
+
|
|
|
|
|
|
|
8 |
def _meaningful_tokens(text: str):
|
|
|
9 |
words = re.split(r"\W+", text.lower())
|
10 |
return [w for w in words if w and w not in STOPWORDS]
|
11 |
|
12 |
+
@gr.tools( # NEW – turns the fn into an MCP tool
|
13 |
+
name="purine_ingredients_fuzzy_search",
|
14 |
+
description="Return up to `k` food-items that fuzzy-match the query and their "
|
15 |
+
"purine data (mg/100 g)."
|
16 |
+
)
|
17 |
+
def fuzzy_search(
|
18 |
+
query: str, # required → will appear in the schema
|
19 |
+
k: int = 5,
|
20 |
+
cutoff: int = 75
|
21 |
+
) -> list[dict]:
|
22 |
"""
|
23 |
+
Parameters
|
24 |
+
----------
|
25 |
+
query : str
|
26 |
+
Ingredient or dish name to look up.
|
27 |
+
k : int, optional
|
28 |
+
Maximum rows to return (default = 5).
|
29 |
+
cutoff : int, optional
|
30 |
+
Minimal RapidFuzz token-set ratio (default = 75).
|
31 |
+
|
32 |
+
Returns
|
33 |
+
-------
|
34 |
+
list[dict]
|
35 |
+
Each dict contains 'food', 'purines_mg_per_100g', and 'classification'.
|
36 |
"""
|
37 |
+
|
38 |
# direct substring hits (best precision, no scoring needed)
|
39 |
mask = DF["food"].str.contains(query, case=False, regex=False)
|
40 |
direct = DF[mask]
|