Spaces:
Build error
Build error
File size: 6,492 Bytes
51ca1a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.constraints import maxnorm
from tensorflow.keras.optimizers import SGD
from keras.layers.convolutional import Conv2D
from keras.layers import Dense, Conv2D ,Flatten,Dropout,MaxPool2D, BatchNormalization
from keras.utils import np_utils
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg19 import VGG19
import keras
from PIL import Image
import matplotlib.pyplot as plt
import seaborn
from sklearn.metrics import confusion_matrix , classification_report
import os
import cv2
from skimage.transform import resize
import streamlit as st
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
# function to draw bounding box on the detected object with class name
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h, COLORS):
label = f'damage:{confidence}'
color = COLORS[class_id]
cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), color, 2)
cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# plt.imshow(img)
# plt.show()
def detection_inference(image, scale = 1/255, image_size = 416, conf_threshold = 0.1, nms_threshold = 0.4):
Width = image.shape[1]
Height = image.shape[0]
net=cv2.dnn.readNet('yolov4-custom_best.weights','yolov4-custom.cfg')
COLORS = np.random.uniform(0, 255, size=(1, 3))
blob = cv2.dnn.blobFromImage(image, scale, (image_size, image_size), (0,0,0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores=detection[5:]
class_id=np.argmax(scores)
confidence=scores[class_id]
if confidence > 0.1:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_bounding_box(image, class_ids[i], confidences[i], round(x), round(y), round(x+w), round(y+h), COLORS)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.imshow(image)
plt.show()
return image
# st.image(image, caption='Object detection output', use_column_width=True)
def _predict(img, model):
m = keras.models.load_model(model)
img2 = img.resize((224, 224))
image_array = np.asarray(img2)
new_one = image_array.reshape((1, 224, 224, 3))
y_pred = m(new_one)
print(y_pred)
val = np.argmax(y_pred, axis = 1)
return y_pred, val
@tf.custom_gradient
def guidedRelu(x):
def grad(dy):
return tf.cast(dy>0,"float32") * tf.cast(x>0, "float32") * dy
return tf.nn.relu(x), grad
def gradcam(img, model):
m = keras.models.load_model(model)
LAYER_NAME = 'block5_conv4'
gb_model = tf.keras.models.Model(
inputs = [m.inputs],
outputs = [m.get_layer(LAYER_NAME).output]
)
layer_dict = [layer for layer in gb_model.layers[1:] if hasattr(layer,'activation')]
for layer in layer_dict:
if layer.activation == tf.keras.activations.relu:
layer.activation = guidedRelu
img2 = img.resize((224, 224))
image_array = np.asarray(img2)
print(image_array.shape)
new_one = image_array.reshape((1, 224, 224, 3))
with tf.GradientTape() as tape:
inputs = tf.cast(new_one, tf.float32)
tape.watch(inputs)
outputs = gb_model(inputs)[0]
grads = tape.gradient(outputs,inputs)[0]
weights = tf.reduce_mean(grads, axis=(0, 1))
grad_cam = np.ones(outputs.shape[0: 2], dtype = np.float32)
for i, w in enumerate(weights):
grad_cam += w * outputs[:, :, i]
grad_cam_img = cv2.resize(grad_cam.numpy(), (img.size[0], img.size[1]))
grad_cam_img = np.maximum(grad_cam_img, 0)
heatmap = (grad_cam_img - grad_cam_img.min()) / (grad_cam_img.max() - grad_cam_img.min())
grad_cam_img = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET)
output_image = cv2.addWeighted(np.asarray(img).astype('uint8'), 1, grad_cam_img, 0.4, 0)
output_img = Image.fromarray(output_image)
st.image(output_img, caption='Class Activation Visualization', use_column_width=True)
plt.imshow(output_image)
plt.axis("off")
plt.show()
# guided_back_prop = grads
# guided_cam = np.maximum(grad_cam, 0)
# guided_cam = guided_cam / np.max(guided_cam) # scale 0 to 1.0
# guided_cam = resize(guided_cam, (224,224), preserve_range=True)
# #pointwise multiplcation of guided backprop and grad CAM
# gd_gb = np.dstack((
# guided_back_prop[:, :, 0] * guided_cam,
# guided_back_prop[:, :, 1] * guided_cam,
# guided_back_prop[:, :, 2] * guided_cam,
# ))
# plt.imshow(gd_gb)
# plt.axis("off")
# plt.show()
uploaded_file = st.file_uploader(
"Choose an image of your infrastructure", type=['jpg', 'jpeg', 'png'])
if uploaded_file is not None:
img = Image.open(uploaded_file).convert('RGB')
cv_img = np.array(img)
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)
# img2 = Image.open('test.jpg')
st.image(img, caption='Uploaded file of your infrastructure', use_column_width=True)
# similarity = ssim(img, img2)
# st.write("")
# st.write(f'This is {similarity * 100}% histopathological image')
# if similarity >= 0.85:
st.write("")
st.write("Classifying...")
y_pred, val = _predict(img, 'damage-detections.h5')
if val == 0:
st.write(f'The infrastructure has damage.')
final_img = detection_inference(cv_img)
final_pil_image = Image.fromarray(final_img)
gradcam(final_pil_image, 'damage-detections.h5')
else:
st.write(f'The infrastructure does not have damage.')
gradcam(img, 'damage-detections.h5')
|