marwashahid commited on
Commit
6a281d7
·
verified ·
1 Parent(s): 28ac562

create app.py

Browse files
Files changed (1) hide show
  1. app.py +145 -0
app.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from unsloth import FastLanguageModel
3
+ import torch
4
+ import pandas as pd
5
+ from datasets import Dataset
6
+ import numpy as np
7
+ from sklearn.model_selection import train_test_split
8
+ from trl import SFTTrainer
9
+ from transformers import TrainingArguments
10
+ from unsloth import is_bfloat16_supported
11
+
12
+ max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
13
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
14
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
15
+
16
+
17
+ model, tokenizer = FastLanguageModel.from_pretrained(
18
+ model_name = "unsloth/tinyllama-bnb-4bit", # "unsloth/tinyllama" for 16bit loading
19
+ max_seq_length = max_seq_length,
20
+ dtype = dtype,
21
+ load_in_4bit = load_in_4bit,
22
+ )
23
+
24
+ model = FastLanguageModel.get_peft_model(
25
+ model,
26
+ r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
27
+ target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
28
+ "gate_proj", "up_proj", "down_proj",],
29
+ lora_alpha = 32,
30
+ lora_dropout = 0, # Currently only supports dropout = 0
31
+ bias = "none", # Currently only supports bias = "none"
32
+ use_gradient_checkpointing = False, # @@@ IF YOU GET OUT OF MEMORY - set to True @@@
33
+ random_state = 3407,
34
+ use_rslora = False, # We support rank stabilized LoRA
35
+ loftq_config = None, # And LoftQ
36
+ )
37
+
38
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an output that provides correct output for that task. Write a response that produces correct solution to the problem
39
+
40
+ ### Instruction:
41
+ {}
42
+
43
+ ### Input:
44
+ {}
45
+
46
+ ### Response:
47
+ {}"""
48
+
49
+ EOS_TOKEN = tokenizer.eos_token
50
+ def formatting_prompts_func(examples):
51
+ instructions = "The problem has the following answer. Understand step-by-step how it is solved to produce the correct solution and then produce the correct solution"
52
+ inputs = examples["Riddle"]
53
+ outputs = examples["Answer"]
54
+ texts = []
55
+ for instruction, input, output in zip(instructions, inputs, outputs):
56
+ # Must add EOS_TOKEN, otherwise your generation will go on forever!
57
+ text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
58
+ texts.append(text)
59
+ return { "text" : texts, }
60
+
61
+
62
+
63
+ df = pd.read_csv('math_riddles.csv')
64
+ train, test = train_test_split(df, test_size=0.2, random_state=42)
65
+ train_ds = Dataset.from_pandas(train)
66
+ test_ds = Dataset.from_pandas(test)
67
+
68
+ tokenized_train = train_ds.map(formatting_prompts_func, batched=True,
69
+ remove_columns=['Riddle', 'Answer', '__index_level_0__']) # Removing features
70
+
71
+ tokenized_test = test_ds.map(formatting_prompts_func, batched=True,
72
+ remove_columns=['Riddle', 'Answer']) # Removing features
73
+
74
+
75
+
76
+ trainer = SFTTrainer(
77
+ model = model,
78
+ tokenizer = tokenizer,
79
+ train_dataset = tokenized_train,
80
+ dataset_text_field = "text",
81
+ max_seq_length = max_seq_length,
82
+ dataset_num_proc = 24,
83
+ packing = True, # Packs short sequences together to save time!
84
+ args = TrainingArguments(
85
+ per_device_train_batch_size = 2,
86
+ gradient_accumulation_steps = 1,
87
+ warmup_ratio = 0.1,
88
+ num_train_epochs = 3,
89
+ learning_rate = 2e-5,
90
+ fp16 = not is_bfloat16_supported(),
91
+ bf16 = is_bfloat16_supported(),
92
+ logging_steps = 1,
93
+ optim = "adamw_8bit",
94
+ weight_decay = 0.1,
95
+ lr_scheduler_type = "linear",
96
+ seed = 3407,
97
+ output_dir = "outputs",
98
+ report_to = "none", # Use this for WandB etc
99
+ ),
100
+ )
101
+
102
+ trainer_stats = trainer.train()
103
+
104
+ # Define inference function
105
+ def inference(instruction, user_input):
106
+ prompt = alpaca_prompt.format(
107
+ instruction,
108
+ user_input,
109
+ "" # Leave output blank for generation
110
+ )
111
+
112
+ inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
113
+
114
+ outputs = model.generate(
115
+ **inputs,
116
+ max_new_tokens=64,
117
+ use_cache=True
118
+ )
119
+
120
+ # Fix: Define result before printing it
121
+ result = tokenizer.batch_decode(outputs)[0]
122
+ print(result) # Now you can print it
123
+
124
+ # Extract just the generated response (after the prompt)
125
+ response_prefix = "### Response:"
126
+ if response_prefix in result:
127
+ result = result.split(response_prefix)[1].strip()
128
+
129
+ return result
130
+
131
+ # Create Gradio interface
132
+ import gradio as gr
133
+ demo = gr.Interface(
134
+ fn=inference,
135
+ inputs=[
136
+ gr.Textbox(label="Instruction", value="Solve the problem"),
137
+ gr.Textbox(label="Input", value="There is a three digit number.The second digit is four times as big as the third digit, while the first digit is three less than the second digit.What is the number?")
138
+ ],
139
+ outputs="text",
140
+ title="Language Model Interface",
141
+ description="Enter an instruction and input to generate a response from the model."
142
+ )
143
+
144
+
145
+ demo.launch(share=True)