Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
model_id = f'martyyz/vit-base-patch16-224-finetuned-flower'
|
| 6 |
+
labels = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
|
| 7 |
+
|
| 8 |
+
def classify_image(image):
|
| 9 |
+
model = AutoModelForImageClassification.from_pretrained(model_id)
|
| 10 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
|
| 11 |
+
inp = feature_extractor(image, return_tensors='pt')
|
| 12 |
+
outp = model(**inp)
|
| 13 |
+
pred = torch.nn.functional.softmax(outp.logits, dim=-1)
|
| 14 |
+
preds = pred[0].cpu().detach().numpy()
|
| 15 |
+
confidence = {label: float(preds[i]) for i, label in enumerate(labels)}
|
| 16 |
+
return confidence
|
| 17 |
+
|
| 18 |
+
interface = gr.Interface(fn=classify_image,
|
| 19 |
+
inputs='image',
|
| 20 |
+
examples=['flower-1.jpeg', 'flower-2.jpeg'],
|
| 21 |
+
outputs='label').launch()
|