debug: peft
Browse files- app.py +46 -148
- requirements.txt +1 -4
app.py
CHANGED
|
@@ -1,30 +1,10 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
import subprocess
|
| 3 |
-
import importlib.util
|
| 4 |
-
|
| 5 |
-
# Check if required packages are installed
|
| 6 |
-
required_packages = ["ftfy", "einops", "imageio", "peft", "bitsandbytes"]
|
| 7 |
-
for package in required_packages:
|
| 8 |
-
if importlib.util.find_spec(package) is None:
|
| 9 |
-
print(f"Installing missing dependency: {package}")
|
| 10 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 11 |
-
|
| 12 |
-
import os
|
| 13 |
import torch
|
| 14 |
import gradio as gr
|
| 15 |
import spaces
|
| 16 |
from diffusers.utils import export_to_video
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
from diffusers import AutoencoderKLWan, WanPipeline
|
| 21 |
-
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
| 22 |
-
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 23 |
-
import peft
|
| 24 |
-
print("Successfully imported all required modules")
|
| 25 |
-
except ImportError as e:
|
| 26 |
-
print(f"Error importing diffusers components: {e}")
|
| 27 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "diffusers", "peft"])
|
| 28 |
|
| 29 |
# Define model options
|
| 30 |
MODEL_OPTIONS = {
|
|
@@ -38,21 +18,7 @@ SCHEDULER_OPTIONS = {
|
|
| 38 |
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
|
| 39 |
}
|
| 40 |
|
| 41 |
-
|
| 42 |
-
"""
|
| 43 |
-
Alternative approach to loading the model with LoRA weights
|
| 44 |
-
without using the built-in load_lora_weights method.
|
| 45 |
-
"""
|
| 46 |
-
print(f"Loading model: {model_id}")
|
| 47 |
-
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
| 48 |
-
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
| 49 |
-
|
| 50 |
-
# Print PEFT version information
|
| 51 |
-
print(f"PEFT version: {peft.__version__}")
|
| 52 |
-
|
| 53 |
-
return pipe
|
| 54 |
-
|
| 55 |
-
@spaces.GPU(duration=300) # Set a 5-minute duration for the GPU access
|
| 56 |
def generate_video(
|
| 57 |
model_choice,
|
| 58 |
prompt,
|
|
@@ -68,119 +34,52 @@ def generate_video(
|
|
| 68 |
num_inference_steps,
|
| 69 |
output_fps
|
| 70 |
):
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
except Exception as e:
|
| 114 |
-
print(f"Error loading LoRA weights: {str(e)}")
|
| 115 |
-
|
| 116 |
-
# Try an alternative approach
|
| 117 |
-
try:
|
| 118 |
-
print("Attempting alternative approach for LoRA integration...")
|
| 119 |
-
# Let's try the direct adapter approach
|
| 120 |
-
from peft import PeftModel
|
| 121 |
-
from huggingface_hub import hf_hub_download
|
| 122 |
-
|
| 123 |
-
# Make a temporary directory for the LoRA weights
|
| 124 |
-
lora_dir = "lora_weights"
|
| 125 |
-
os.makedirs(lora_dir, exist_ok=True)
|
| 126 |
-
|
| 127 |
-
# Download the LoRA weights
|
| 128 |
-
print(f"Downloading LoRA weights from {lora_id}")
|
| 129 |
-
lora_file = hf_hub_download(lora_id, filename="pytorch_lora_weights.safetensors")
|
| 130 |
-
|
| 131 |
-
print(f"LoRA file downloaded: {lora_file}")
|
| 132 |
-
print("Applying LoRA weights manually...")
|
| 133 |
-
|
| 134 |
-
# Instead of trying to directly integrate LoRA, we'll just proceed without it for now
|
| 135 |
-
# but with a warning message
|
| 136 |
-
print("WARNING: Could not load LoRA weights. Proceeding without LoRA adaptation.")
|
| 137 |
-
except Exception as nested_e:
|
| 138 |
-
print(f"Alternative LoRA approach also failed: {str(nested_e)}")
|
| 139 |
-
print("Proceeding without LoRA weights")
|
| 140 |
-
|
| 141 |
-
# Generate the video
|
| 142 |
-
print(f"Generating video with prompt: {prompt[:50]}...")
|
| 143 |
-
print(f"Parameters: height={height}, width={width}, num_frames={num_frames}, "
|
| 144 |
-
f"guidance_scale={guidance_scale}, steps={num_inference_steps}")
|
| 145 |
-
|
| 146 |
-
# Prepare generation parameters
|
| 147 |
-
generation_params = {
|
| 148 |
-
"prompt": prompt,
|
| 149 |
-
"negative_prompt": negative_prompt,
|
| 150 |
-
"height": height,
|
| 151 |
-
"width": width,
|
| 152 |
-
"num_frames": num_frames,
|
| 153 |
-
"guidance_scale": guidance_scale,
|
| 154 |
-
"num_inference_steps": num_inference_steps
|
| 155 |
-
}
|
| 156 |
-
|
| 157 |
-
# Add cross attention scale if LoRA was successfully loaded
|
| 158 |
-
if lora_id and lora_id.strip():
|
| 159 |
-
generation_params["cross_attention_kwargs"] = {"scale": lora_scale}
|
| 160 |
-
print(f"Using LoRA scale: {lora_scale}")
|
| 161 |
-
|
| 162 |
-
# Generate the video
|
| 163 |
-
print("Starting generation...")
|
| 164 |
-
output = pipe(**generation_params).frames[0]
|
| 165 |
-
print(f"Generation complete, frames shape: {output.shape if hasattr(output, 'shape') else 'unknown'}")
|
| 166 |
-
|
| 167 |
-
# Export to video
|
| 168 |
-
temp_file = "output.mp4"
|
| 169 |
-
print(f"Exporting video with fps={output_fps}")
|
| 170 |
-
export_to_video(output, temp_file, fps=output_fps)
|
| 171 |
-
print(f"Video exported to {temp_file}")
|
| 172 |
-
|
| 173 |
-
return temp_file
|
| 174 |
-
except Exception as e:
|
| 175 |
-
import traceback
|
| 176 |
-
error_trace = traceback.format_exc()
|
| 177 |
-
print(f"Error generating video: {str(e)}\n{error_trace}")
|
| 178 |
-
return f"Error generating video: {str(e)}\n{error_trace}"
|
| 179 |
|
| 180 |
# Create the Gradio interface
|
| 181 |
with gr.Blocks() as demo:
|
| 182 |
gr.Markdown("# Wan Video Generation with ZeroGPU")
|
| 183 |
-
gr.Markdown("Generate high-quality videos using the Wan model with optional LoRA adaptations.")
|
| 184 |
|
| 185 |
with gr.Row():
|
| 186 |
with gr.Column(scale=1):
|
|
@@ -309,7 +208,6 @@ with gr.Blocks() as demo:
|
|
| 309 |
- For larger resolution videos, try higher values of flow shift (7.0-12.0)
|
| 310 |
- Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
|
| 311 |
- The model is memory intensive, so adjust resolution according to available VRAM
|
| 312 |
-
- LoRA ID should be a Hugging Face repository containing safetensors files
|
| 313 |
""")
|
| 314 |
|
| 315 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
| 4 |
from diffusers.utils import export_to_video
|
| 5 |
+
from diffusers import AutoencoderKLWan, WanPipeline
|
| 6 |
+
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
| 7 |
+
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Define model options
|
| 10 |
MODEL_OPTIONS = {
|
|
|
|
| 18 |
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
|
| 19 |
}
|
| 20 |
|
| 21 |
+
@spaces.GPU(duration=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def generate_video(
|
| 23 |
model_choice,
|
| 24 |
prompt,
|
|
|
|
| 34 |
num_inference_steps,
|
| 35 |
output_fps
|
| 36 |
):
|
| 37 |
+
# Get model ID from selection
|
| 38 |
+
model_id = MODEL_OPTIONS[model_choice]
|
| 39 |
+
|
| 40 |
+
# Load model
|
| 41 |
+
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
| 42 |
+
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
| 43 |
+
|
| 44 |
+
# Set scheduler
|
| 45 |
+
if scheduler_type == "UniPCMultistepScheduler":
|
| 46 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 47 |
+
pipe.scheduler.config,
|
| 48 |
+
flow_shift=flow_shift
|
| 49 |
+
)
|
| 50 |
+
else:
|
| 51 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
|
| 52 |
+
|
| 53 |
+
# Move to GPU
|
| 54 |
+
pipe.to("cuda")
|
| 55 |
+
|
| 56 |
+
# Load LoRA weights if provided
|
| 57 |
+
if lora_id and lora_id.strip():
|
| 58 |
+
pipe.load_lora_weights(lora_id)
|
| 59 |
+
|
| 60 |
+
# Enable CPU offload for low VRAM
|
| 61 |
+
pipe.enable_model_cpu_offload()
|
| 62 |
+
|
| 63 |
+
# Generate video
|
| 64 |
+
output = pipe(
|
| 65 |
+
prompt=prompt,
|
| 66 |
+
negative_prompt=negative_prompt,
|
| 67 |
+
height=height,
|
| 68 |
+
width=width,
|
| 69 |
+
num_frames=num_frames,
|
| 70 |
+
guidance_scale=guidance_scale,
|
| 71 |
+
num_inference_steps=num_inference_steps
|
| 72 |
+
).frames[0]
|
| 73 |
+
|
| 74 |
+
# Export to video
|
| 75 |
+
temp_file = "output.mp4"
|
| 76 |
+
export_to_video(output, temp_file, fps=output_fps)
|
| 77 |
+
|
| 78 |
+
return temp_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# Create the Gradio interface
|
| 81 |
with gr.Blocks() as demo:
|
| 82 |
gr.Markdown("# Wan Video Generation with ZeroGPU")
|
|
|
|
| 83 |
|
| 84 |
with gr.Row():
|
| 85 |
with gr.Column(scale=1):
|
|
|
|
| 208 |
- For larger resolution videos, try higher values of flow shift (7.0-12.0)
|
| 209 |
- Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
|
| 210 |
- The model is memory intensive, so adjust resolution according to available VRAM
|
|
|
|
| 211 |
""")
|
| 212 |
|
| 213 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -7,7 +7,4 @@ ftfy>=6.1.3
|
|
| 7 |
einops>=0.7.0
|
| 8 |
imageio>=2.31.6
|
| 9 |
imageio-ffmpeg>=0.4.9
|
| 10 |
-
|
| 11 |
-
omegaconf>=2.3.0
|
| 12 |
-
peft==0.7.1
|
| 13 |
-
bitsandbytes>=0.41.0
|
|
|
|
| 7 |
einops>=0.7.0
|
| 8 |
imageio>=2.31.6
|
| 9 |
imageio-ffmpeg>=0.4.9
|
| 10 |
+
peft==0.7.1
|
|
|
|
|
|
|
|
|