File size: 27,334 Bytes
9d0007e 569cdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
#!/usr/bin/env python
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
import time
from collections.abc import Iterator
from typing import List
import faiss
import gradio as gr
import numpy as np
import requests
from tqdm import tqdm
import erniebot as eb
def parse_setup_args():
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=8073)
args = parser.parse_args()
return args
def create_ui_and_launch(args):
with gr.Blocks(title="ERNIE Bot SDK Demos", theme=gr.themes.Soft()) as blocks:
gr.Markdown("# ERNIE Bot SDK基础功能演示")
create_chat_completion_tab()
create_embedding_tab()
create_image_tab()
create_rag_tab()
blocks.launch(server_name="0.0.0.0", server_port=args.port)
def create_chat_completion_tab():
def _infer(
ernie_model, content, state, top_p, temperature, api_type, access_key, secret_key, access_token
):
access_key = access_key.strip()
secret_key = secret_key.strip()
access_token = access_token.strip()
if (access_key == "" or secret_key == "") and access_token == "":
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
if content.strip() == "":
raise gr.Error("输入不能为空,请在清空后重试")
auth_config = {
"api_type": api_type,
}
if access_key:
auth_config["ak"] = access_key
if secret_key:
auth_config["sk"] = secret_key
if access_token:
auth_config["access_token"] = access_token
content = content.strip().replace("<br>", "")
context = state.setdefault("context", [])
context.append({"role": "user", "content": content})
data = {
"messages": context,
"top_p": top_p,
"temperature": temperature,
}
if ernie_model == "chat_file":
response = eb.ChatFile.create(_config_=auth_config, **data, stream=False)
else:
response = eb.ChatCompletion.create(
_config_=auth_config, model=ernie_model, **data, stream=False
)
bot_response = response.result
context.append({"role": "assistant", "content": bot_response})
history = _get_history(context)
return None, history, context, state
def _regen_response(
ernie_model, state, top_p, temperature, api_type, access_key, secret_key, access_token
):
"""Regenerate response."""
context = state.setdefault("context", [])
if len(context) < 2:
raise gr.Error("请至少进行一轮对话")
context.pop()
user_message = context.pop()
return _infer(
ernie_model,
user_message["content"],
state,
top_p,
temperature,
api_type,
access_key,
secret_key,
access_token,
)
def _rollback(state):
"""Roll back context."""
context = state.setdefault("context", [])
content = context[-2]["content"]
context = context[:-2]
state["context"] = context
history = _get_history(context)
return content, history, context, state
def _get_history(context):
history = []
for turn_idx in range(0, len(context), 2):
history.append([context[turn_idx]["content"], context[turn_idx + 1]["content"]])
return history
with gr.Tab("对话补全(Chat Completion)") as chat_completion_tab:
with gr.Row():
with gr.Column(scale=1):
api_type = gr.Dropdown(
label="API Type", info="提供对话能力的后端平台", value="qianfan", choices=["qianfan", "aistudio"]
)
access_key = gr.Textbox(
label="AK", info="用于访问后端平台的AK,如果设置了access token则无需设置此参数", type="password"
)
secret_key = gr.Textbox(
label="SK", info="用于访问后端平台的SK,如果设置了access token则无需设置此参数", type="password"
)
access_token = gr.Textbox(
label="Access Token", info="用于访问后端平台的access token,如果设置了AK、SK则无需设置此参数", type="password"
)
ernie_model = gr.Dropdown(
label="Model", info="模型类型", value="ernie-bot", choices=["ernie-bot", "ernie-bot-turbo"]
)
top_p = gr.Slider(
label="Top-p", info="控制采样范围,该参数越小生成结果越稳定", value=0.7, minimum=0, maximum=1, step=0.05
)
temperature = gr.Slider(
label="Temperature",
info="控制采样随机性,该参数越小生成结果越稳定",
value=0.95,
minimum=0.05,
maximum=1,
step=0.05,
)
with gr.Column(scale=4):
state = gr.State({})
context_chatbot = gr.Chatbot(label="对话历史")
input_text = gr.Textbox(label="消息内容", placeholder="请输入...")
with gr.Row():
clear_btn = gr.Button("清空")
rollback_btn = gr.Button("撤回")
regen_btn = gr.Button("重新生成")
send_btn = gr.Button("发送")
raw_context_json = gr.JSON(label="原始对话上下文信息")
api_type.change(
lambda api_type: {
"qianfan": (gr.update(visible=True), gr.update(visible=True)),
"aistudio": (gr.update(visible=False), gr.update(visible=False)),
}[api_type],
inputs=api_type,
outputs=[
access_key,
secret_key,
],
)
chat_completion_tab.select(
lambda: (None, None, None, {}),
outputs=[
input_text,
context_chatbot,
raw_context_json,
state,
],
)
input_text.submit(
_infer,
inputs=[
ernie_model,
input_text,
state,
top_p,
temperature,
api_type,
access_key,
secret_key,
access_token,
],
outputs=[
input_text,
context_chatbot,
raw_context_json,
state,
],
)
clear_btn.click(
lambda _: (None, None, None, {}),
inputs=clear_btn,
outputs=[
input_text,
context_chatbot,
raw_context_json,
state,
],
show_progress=False,
)
rollback_btn.click(
_rollback,
inputs=[state],
outputs=[
input_text,
context_chatbot,
raw_context_json,
state,
],
show_progress=False,
)
regen_btn.click(
_regen_response,
inputs=[
ernie_model,
state,
top_p,
temperature,
api_type,
access_key,
secret_key,
access_token,
],
outputs=[
input_text,
context_chatbot,
raw_context_json,
state,
],
)
send_btn.click(
_infer,
inputs=[
ernie_model,
input_text,
state,
top_p,
temperature,
api_type,
access_key,
secret_key,
access_token,
],
outputs=[
input_text,
context_chatbot,
raw_context_json,
state,
],
)
def create_embedding_tab():
def _get_embeddings(text1, text2, api_type, access_key, secret_key, access_token):
access_key = access_key.strip()
secret_key = secret_key.strip()
access_token = access_token.strip()
if (access_key == "" or secret_key == "") and access_token == "":
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
auth_config = {
"api_type": api_type,
}
if access_key:
auth_config["ak"] = access_key
if secret_key:
auth_config["sk"] = secret_key
if access_token:
auth_config["access_token"] = access_token
if text1.strip() == "" or text2.strip() == "":
raise gr.Error("两个输入均不能为空")
embeddings = eb.Embedding.create(
_config_=auth_config,
model="ernie-text-embedding",
input=[text1.strip(), text2.strip()],
)
emb_0 = embeddings.rbody["data"][0]["embedding"]
emb_1 = embeddings.rbody["data"][1]["embedding"]
cos_sim = _calc_cosine_similarity(emb_0, emb_1)
cos_sim_text = f"## 两段文本余弦相似度: {cos_sim}"
return str(emb_0), str(emb_1), cos_sim_text
def _calc_cosine_similarity(vec_0, vec_1):
dot_result = float(np.dot(vec_0, vec_1))
denom = np.linalg.norm(vec_0) * np.linalg.norm(vec_1)
return 0.5 + 0.5 * (dot_result / denom) if denom != 0 else 0
with gr.Tab("语义向量(Embedding)"):
gr.Markdown("输入两段文本,分别获取两段文本的向量表示,并计算向量间的余弦相似度")
with gr.Row():
with gr.Column(scale=1):
api_type = gr.Dropdown(
label="API Type", info="提供语义向量能力的后端平台", value="qianfan", choices=["qianfan", "aistudio"]
)
access_key = gr.Textbox(
label="AK", info="用于访问后端平台的AK,如果设置了access token则无需设置此参数", type="password"
)
secret_key = gr.Textbox(
label="SK", info="用于访问后端平台的SK,如果设置了access token则无需设置此参数", type="password"
)
access_token = gr.Textbox(
label="Access Token", info="用于访问后端平台的access token,如果设置了AK、SK则无需设置此参数", type="password"
)
with gr.Column(scale=4):
with gr.Row():
text1 = gr.Textbox(label="第一段文本", placeholder="输入第一段文本")
text2 = gr.Textbox(label="第二段文本", placeholder="输入第二段文本")
cal_emb = gr.Button("生成向量")
cos_sim = gr.Markdown("## 余弦相似度: -")
with gr.Row():
embedding1 = gr.Textbox(label="文本1向量结果")
embedding2 = gr.Textbox(label="文本2向量结果")
api_type.change(
lambda api_type: {
"qianfan": (gr.update(visible=True), gr.update(visible=True)),
"aistudio": (gr.update(visible=False), gr.update(visible=False)),
}[api_type],
inputs=api_type,
outputs=[
access_key,
secret_key,
],
)
cal_emb.click(
_get_embeddings,
inputs=[
text1,
text2,
api_type,
access_key,
secret_key,
access_token,
],
outputs=[
embedding1,
embedding2,
cos_sim,
],
)
def create_image_tab():
def _gen_image(prompt, w_and_h, api_type, access_key, secret_key, access_token):
access_key = access_key.strip()
secret_key = secret_key.strip()
access_token = access_token.strip()
if (access_key == "" or secret_key == "") and access_token == "":
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
if prompt.strip() == "":
raise gr.Error("输入不能为空")
auth_config = {
"api_type": api_type,
}
if access_key:
auth_config["ak"] = access_key
if secret_key:
auth_config["sk"] = secret_key
if access_token:
auth_config["access_token"] = access_token
timestamp = int(time.time())
w, h = [int(x) for x in w_and_h.strip().split("x")]
response = eb.Image.create(
_config_=auth_config,
model="ernie-vilg-v2",
prompt=prompt,
width=w,
height=h,
version="v2",
image_num=1,
)
img_url = response.data["sub_task_result_list"][0]["final_image_list"][0]["img_url"]
res = requests.get(img_url)
with open(f"{timestamp}.jpg", "wb") as f:
f.write(res.content)
return f"{timestamp}.jpg"
with gr.Tab("文生图(Image Generation)"):
with gr.Row():
with gr.Column(scale=1):
api_type = gr.Dropdown(
label="API Type", info="提供文生图能力的后端平台", value="yinian", choices=["yinian"]
)
access_key = gr.Textbox(
label="AK", info="用于访问后端平台的AK,如果设置了access token则无需设置此参数", type="password"
)
secret_key = gr.Textbox(
label="SK", info="用于访问后端平台的SK,如果设置了access token则无需设置此参数", type="password"
)
access_token = gr.Textbox(
label="Access Token", info="用于访问后端平台的access token,如果设置了AK、SK则无需设置此参数", type="password"
)
with gr.Column(scale=4):
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="输入用于生成图片的prompt,例如: 生成一朵玫瑰花")
w_and_h = gr.Dropdown(
label="分辨率",
value="512x512",
choices=[
"512x512",
"640x360",
"360x640",
"1024x1024",
"1280x720",
"720x1280",
"2048x2048",
"2560x1440",
"1440x2560",
],
)
submit_btn = gr.Button("生成图片")
image_show_zone = gr.Image(label="图片生成结果", type="filepath", show_download_button=True)
submit_btn.click(
_gen_image,
inputs=[
prompt,
w_and_h,
api_type,
access_key,
secret_key,
access_token,
],
outputs=image_show_zone,
)
def create_rag_tab():
REF_HTML = """
<details style="border: 1px solid #ccc; padding: 10px; border-radius: 4px; margin-bottom: 4px">
<summary style="display: flex; align-items: center; font-weight: bold;">
<span style="margin-right: 10px;">[{index}] {title}</span>
<a style="text-decoration: none; background: none !important;" target="_blank">
<!--[Here should be a link icon]-->
<i style="border: solid #000; border-width: 0 2px 2px 0; display: inline-block; padding: 3px;
transform:rotate(-45deg);-webkit-transform(-45deg)">
</i>
</a>
</summary>
<p style="margin-top: 10px;">{text}</p>
</details>
"""
PROMPT_TEMPLATE = """基于以下已知信息,请简洁并专业地回答用户的问题。
如果无法从中得到答案,请说 '根据已知信息无法回答该问题' 或 '没有提供足够的相关信息'。不允许在答案中添加编造成分。
你可以参考以下文章:
{DOCS}
问题:{QUERY}
回答:"""
_CONFIG = {
"ernie_model": "",
"api_type": "",
"AK": "",
"SK": "",
"access_token": "",
"top_p": 0.7,
"temperature": 0.95,
}
def split_by_len(texts: List[str], split_token: int = 384) -> List[str]:
"""
Split the knowledge base docs into chunks by length.
Args:
texts (List[str]): Knowledge Base Texts.
split_token (int, optional): The max length supported by ernie-text-embedding. Default to 384.
Returns:
List[str]: Doc Chunks.
"""
chunk = []
for text in texts:
idx = 0
while idx + split_token < len(text):
temp_text = text[idx : idx + split_token]
next_idx = temp_text.rfind("。") + 1
if next_idx != 0: # If this slice doesn't have a period, add the whole sentence.
chunk.append(temp_text[:next_idx])
idx = idx + next_idx
else:
chunk.append(temp_text)
idx = idx + split_token
chunk.append(text[idx:])
return chunk
def _get_embedding_doc(word: List[str]) -> List[float]:
"""
Get the embedding of a list of words.
Args:
word (List[str]): Words to get embedding.
Returns:
List[float]: Embedding List of the words.
"""
if (_CONFIG["AK"] == "" or _CONFIG["SK"] == "") and _CONFIG["access_token"] == "":
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
embedding: List[float]
if len(word) <= 16:
resp = eb.Embedding.create(model="ernie-text-embedding", input=word)
assert not isinstance(resp, Iterator)
embedding = resp.get_result()
else:
size = len(word)
embedding = []
for i in tqdm(range(math.ceil(size / 16))):
temp_result = eb.Embedding.create(
model="ernie-text-embedding", input=word[i * 16 : (i + 1) * 16]
)
assert not isinstance(temp_result, Iterator)
embedding.extend(temp_result.get_result())
time.sleep(1)
return embedding
def l2_normalization(embedding: np.ndarray) -> np.ndarray:
"Vector Normalization by l2 norm"
if embedding.ndim == 1:
return embedding / np.linalg.norm(embedding).reshape(-1, 1)
else:
return embedding / np.linalg.norm(embedding, axis=1).reshape(-1, 1)
def find_related_doc(
query: str, origin_chunk: List[str], index_ip: faiss.swigfaiss.IndexFlatIP, top_k: int = 5
) -> tuple[str, List[int]]:
"""
Fin top_k similar documents.
Args:
query (str): user query.
origin_chunk (List[str]): Knowledge Base Doc.
index_ip (faiss.swigfaiss.IndexFlatIP): Vector DB index。
top_k (int, optional): Return top_k most similar documents. Default to 5.
Returns:
str, List[int]: The most similar documents and their index.
"""
D, Idx = index_ip.search(np.array(_get_embedding_doc([query])), top_k)
top_k_similar = Idx.tolist()[0]
res = ""
ref_lis = []
for i in range(top_k):
res += f"[参考文章{i+1}]:{origin_chunk[top_k_similar[i]]}" + "\n\n"
ref_lis.append(origin_chunk[top_k_similar[i]])
return res, ref_lis
def process_uploaded_file(files: List[str], *args: object) -> str:
"""
Args:
files: Files path
_CONFIG: Config
"""
_update_config(*args)
content = []
for file in files:
with open(file, "r") as f:
content.append(f.read())
doc_chunk = split_by_len(content)
doc_embedding = _get_embedding_doc(doc_chunk)
assert len(doc_embedding) == len(doc_chunk), "shape mismatch"
doc_embedding_arr = l2_normalization(np.array(doc_embedding))
index_ip = faiss.IndexFlatIP(doc_embedding_arr.shape[1])
index_ip.add(doc_embedding_arr)
temp_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
if not os.path.exists(temp_path):
os.makedirs(temp_path)
faiss.write_index(index_ip, os.path.join(temp_path, "knowledge_embedding.index"))
with open(os.path.join(temp_path, "knowledge.txt"), "w") as f:
for chunk in doc_chunk:
f.write(repr(chunk) + "\n")
return "已完成向量知识库搭建"
def get_ans(query: str, *args: object) -> tuple[str, str]:
_update_config(*args)
if (_CONFIG["AK"] == "" or _CONFIG["SK"] == "") and _CONFIG["access_token"] == "":
raise gr.Error("需要填写正确的AK/SK或access token,不能为空")
temp_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
doc_chunk = []
with open(os.path.join(temp_path, "knowledge.txt"), "r") as f:
for line in f:
doc_chunk.append(eval(line))
index_ip = faiss.read_index(os.path.join(temp_path, "knowledge_embedding.index"))
related_doc, references = find_related_doc(query, doc_chunk, index_ip)
refs = []
for i in range(len(references)):
temp_dict = {
"title": f"Reference{i+1}",
"text": references[i],
}
refs.append(temp_dict)
resp = eb.ChatCompletion.create(
model=_CONFIG["ernie_model"],
messages=[{"role": "user", "content": PROMPT_TEMPLATE.format(DOCS=related_doc, QUERY=query)}],
top_p=_CONFIG["top_p"],
temperature=_CONFIG["temperature"],
)
assert not isinstance(resp, Iterator)
answer = resp.get_result()
return answer, "<h3>References (Click to Expand)</h3>" + "\n".join(
[REF_HTML.format(**item, index=idx + 1) for idx, item in enumerate(refs)]
)
def _update_config(*args: object):
eb.api_type = args[1]
eb.access_token = args[2]
eb.AK = args[3]
eb.SK = args[4]
_CONFIG.update(
{
"ernie_model": args[0],
"api_type": args[1],
"access_token": args[2],
"AK": args[3],
"SK": args[4],
"top_p": args[5],
"temperature": args[6],
}
)
# print(_CONFIG)
with gr.Tab("知识库问答(Retrieval Augmented QA)"):
# gr.Markdown("# 文心大模型RAG问答DEMO")
with gr.Tabs():
with gr.TabItem("设置栏"):
with gr.Row():
with gr.Column():
file_upload = gr.Files(file_types=["txt"], label="目前仅支持txt格式文件")
chat_box = gr.Textbox(show_label=False)
with gr.Column():
ernie_model = gr.Dropdown(
label="Model",
info="模型类型",
value="ernie-bot-4",
choices=["ernie-bot-4", "ernie-bot-turbo", "ernie-bot"],
)
api_type = gr.Dropdown(
label="API Type",
info="提供对话能力的后端平台",
value="aistudio",
choices=["aistudio", "qianfan"],
)
access_token = gr.Textbox(
label="Access Token",
info="用于访问后端平台的access token,如果选择aistudio,则需设置此参数",
type="password",
)
access_key = gr.Textbox(
label="AK", info="用于访问千帆平台的AK,如果选择qianfan,则需设置此参数", type="password"
)
secret_key = gr.Textbox(
label="SK", info="用于访问千帆平台的SK,如果选择qianfan,则需设置此参数", type="password"
)
top_p = gr.Slider(
label="Top-p",
info="控制采样范围,该参数越小生成结果越稳定",
value=0.7,
step=0.05,
minimum=0,
maximum=1,
)
temperature = gr.Slider(
label="temperature",
info="控制采样随机性,该参数越小生成结果越稳定",
value=0.95,
step=0.05,
maximum=1,
minimum=0,
)
with gr.TabItem("问答栏"):
with gr.Row():
query_box = gr.Textbox(show_label=False, placeholder="Enter question and press ENTER")
answer_box = gr.Textbox(show_label=False, value="", lines=5)
ref_boxes = gr.HTML(label="References")
query_box.submit(
get_ans,
[query_box, ernie_model, api_type, access_token, access_key, secret_key, top_p, temperature],
[answer_box, ref_boxes],
)
file_upload.upload(
process_uploaded_file,
[file_upload, ernie_model, api_type, access_token, access_key, secret_key, top_p, temperature],
chat_box,
)
if __name__ == "__main__":
args = parse_setup_args()
create_ui_and_launch(args)
|