File size: 27,898 Bytes
569cdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 项目介绍\n",
"ERNIE Bot SDK提供便捷易用的接口,可以调用文心大模型的能力,包含文本创作、通用对话、语义向量、AI作图等。\n",
"\n",
"使用步骤可以大致分为`安装-认证鉴权-模型调用`三个步骤。\n",
"\n",
"在模型调用方面目前主要提供有四类功能:对话补全(Chat Completion),函数调用(Function Calling),文本嵌入(Embedding),文生图(Image Generation)。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. 安装\n",
"快速安装Python语言的最新版本ERNIE Bot SDK(要求Python >= 3.8)。"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: erniebot in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (0.4.0)\n",
"Requirement already satisfied: aiohttp in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from erniebot) (3.8.6)\n",
"Requirement already satisfied: bce-python-sdk in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from erniebot) (0.8.92)\n",
"Requirement already satisfied: colorlog in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from erniebot) (6.7.0)\n",
"Requirement already satisfied: jsonschema>=4.19 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from erniebot) (4.19.2)\n",
"Requirement already satisfied: requests>=2.20 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from erniebot) (2.31.0)\n",
"Requirement already satisfied: typing-extensions in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from erniebot) (4.8.0)\n",
"Requirement already satisfied: attrs>=22.2.0 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from jsonschema>=4.19->erniebot) (23.1.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from jsonschema>=4.19->erniebot) (2023.7.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from jsonschema>=4.19->erniebot) (0.30.2)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from jsonschema>=4.19->erniebot) (0.12.0)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from requests>=2.20->erniebot) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from requests>=2.20->erniebot) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from requests>=2.20->erniebot) (2.0.7)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from requests>=2.20->erniebot) (2023.7.22)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from aiohttp->erniebot) (6.0.4)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from aiohttp->erniebot) (4.0.3)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from aiohttp->erniebot) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from aiohttp->erniebot) (1.4.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from aiohttp->erniebot) (1.3.1)\n",
"Requirement already satisfied: pycryptodome>=3.8.0 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from bce-python-sdk->erniebot) (3.19.0)\n",
"Requirement already satisfied: future>=0.6.0 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from bce-python-sdk->erniebot) (0.18.3)\n",
"Requirement already satisfied: six>=1.4.0 in /opt/anaconda3/envs/ernie/lib/python3.10/site-packages (from bce-python-sdk->erniebot) (1.16.0)\n"
]
}
],
"source": [
"!pip install erniebot"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. 认证鉴权\n",
"\n",
"使用ERNIE Bot SDK之前,请首先申请并设置鉴权参数,详情参考[认证鉴权](../../docs/authentication.md)。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3. 参数配置\n",
"ERNIE Bot SDK参数配置,主要涉及认证鉴权、后端平台等信息,详情参考[参数配置](../../docs/configuration.md)。\n",
"\n",
"\n",
"**注意事项**:\n",
"* AI Studio每个账户的access token,有100万token的免费额度,可以用于ERNIE Bot SDK调用文心一言大模型。\n",
"* 在[token管理页面](https://aistudio.baidu.com/token/manage)可以查看token获取、消耗明细和过期记录,或者购买更多token。\n",
"* access token是私密信息,切记不要对外公开。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. 如果使用AI Studio(推荐使用),可以在个人中心的[访问令牌页面](https://aistudio.baidu.com/usercenter/token)获取用户凭证access token。"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import erniebot\n",
"\n",
"erniebot.api_type = 'aistudio'\n",
"# 通过使用全局变量设置鉴权信息\n",
"erniebot.access_token = '<eb-access-token>'\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. 如果使用qianfan,在完成创建千帆应用后, 在[控制台](https://console.bce.baidu.com/qianfan/ais/console/applicationConsole/application)创建千帆应用,可以获取到API key与secret key。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import erniebot\n",
"\n",
"erniebot.api_type = 'qianfan'\n",
"erniebot.access_token = None # Option\n",
"\n",
"# 通过使用全局变量设置鉴权信息\n",
"erniebot.ak = '<eb-ak>'\n",
"erniebot.sk = '<eb-sk>'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3. 如果使用yinian(AI绘画功能),先需在智能创作页面中[开通AI绘画服务](https://console.bce.baidu.com/ai/#/ai/intelligentwriting/overview/index),激活AI绘画-高级功能后,进入在智能创作平台 - [应用页面](https://console.bce.baidu.com/ai/#/ai/intelligentwriting/app/list),创建应用,可以拿到API key和secret key。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import erniebot\n",
"\n",
"erniebot.api_type = 'yinian'\n",
"erniebot.access_token = None # Option\n",
"\n",
"# 直接使用全局变量设置鉴权信息\n",
"erniebot.ak = '<eb-ak>'\n",
"erniebot.sk = '<eb-sk>'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4. 模型总览\n",
"\n",
"完成好上述步骤之后,就可以根据需求调用相关模型,ERNIE Bot SDK支持的所有模型如下:\n",
"\n",
"| 模型名称 | 说明 | 功能 | 支持该模型的后端 | 输入token数量上限 |\n",
"|:--- | :--- | :--- | :--- | :--- |\n",
"| ernie-bot | 文心一言模型。具备优秀的知识增强和内容生成能力,在文本创作、问答、推理和代码生成等方面表现出色。 | 对话补全,函数调用 | qianfan,aistudio | 3000 |\n",
"| ernie-bot-turbo | 文心一言模型。相比erniebot模型具备更快的响应速度和学习能力,API调用成本更低。 | 对话补全 | qianfan,aistudio | 3000 |\n",
"| ernie-bot-4 | 文心一言模型。基于文心大模型4.0版本的文心一言,具备目前文心一言系列模型中最优的理解和生成能力。 | 对话补全,函数调用 | qianfan,aistudio | 3000 |\n",
"| ernie-bot-8k | 文心一言模型。在ernie-bot模型的基础上增强了对长对话上下文的支持,输入token数量上限为7000。 | 对话补全,函数调用 | qianfan,aistudio | 7000 |\n",
"| ernie-text-embedding | 文心百中语义模型。支持计算最多384个token的文本的向量表示。 | 语义向量 | qianfan,aistudio | 384*16 |\n",
"| ernie-vilg-v2 | 文心一格模型。 | 文生图 | yinian | 200 |"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"API名称:ernie-bot, 模型名称:文心一言旗舰版\n",
"API名称:ernie-bot-turbo, 模型名称:文心一言轻量版\n",
"API名称:ernie-bot-4, 模型名称:基于文心大模型4.0版本的文心一言\n",
"API名称:ernie-text-embedding, 模型名称:文心百中语义模型\n",
"API名称:ernie-vilg-v2, 模型名称:文心一格模型\n"
]
}
],
"source": [
"import erniebot\n",
"# 您也可以通过命令查找模型\n",
"models = erniebot.Model.list()\n",
"for i in range(len(models)):\n",
" print(f\"API名称:{models[i][0]}, 模型名称:{models[i][1]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5. 快速开始"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.1 对话补全(Chat Completion)\n",
"文心一言系列对话模型可以理解自然语言,并以文本输出与用户进行对话。将对话上下文与输入文本提供给模型,由模型给出新的回复,即为对话补全。对话补全功能可应用于广泛的实际场景,例如对话沟通、内容创作、分析控制、函数调用等。"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"您好,我是文心一言,英文名是ERNIE Bot。我能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。\n"
]
}
],
"source": [
"import erniebot\n",
"erniebot.api_type = 'aistudio'\n",
"erniebot.access_token = '<eb-access-token>'\n",
"\n",
"chat_message = [\n",
" {'role': 'user', 'content': \"你好,请介绍一下你自己\"}\n",
"]\n",
"response = erniebot.ChatCompletion.create(model='ernie-bot-4', \n",
" messages=chat_message)\n",
"\n",
"# 使用response.get_result()获得模型返回结果\n",
"print(response.get_result())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.2 文本嵌入(Embedding)\n",
"文本向量,是指将一段文本,转化为一定维度的向量(文心百中语义模型中为384维),其中相近语义、相关主题的文本在向量空间更接近。拥有一个良好的文本嵌入特征,对于文本可视化、检索、聚类、内容审核等下游任务,有着重要的意义,目前API接口可接受的batch_size单次最多支持16个,每段文本最多支持384token。"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0.12393086403608322, 0.06512520462274551, 0.05346716567873955, 0.054938241839408875, 0.01714814081788063, -0.08167827129364014, -0.023749373853206635, -0.05039228871464729, -0.040341075509786606, 0.05865912884473801, 0.016324903815984726, -0.058406684547662735, -0.04220706224441528, 0.0458282008767128, -0.1460632085800171, -0.049745965749025345, -0.03678134083747864, 0.012619715183973312, -0.014126688241958618, 0.0006569335819222033, 0.013071301393210888, -0.0018191564595326781, -0.04659661278128624, -0.05999888479709625, 0.02386806719005108, -0.033645354211330414, 0.08845698088407516, 0.07145956158638, -0.010486936196684837, -0.015010570175945759, -0.01926182582974434, -0.09276989102363586, -0.008814138360321522, -0.02573108859360218, -0.011305577121675014, 0.02599318139255047, 0.013190587051212788, 0.055894795805215836, -0.077104851603508, 0.010798984207212925, -0.05201827362179756, -0.01178425457328558, 0.04679083451628685, -0.006311427801847458, 0.07979213446378708, -0.05993827432394028, -0.10336479544639587, 0.060519710183143616, -0.008194743655622005, -0.02462303452193737, 0.008664045482873917, -0.019067654386162758, 0.06620414555072784, -0.036438774317502975, 0.030461542308330536, 0.012983747757971287, -0.027496762573719025, -0.02178688906133175, 0.0008967460598796606, -0.014411399140954018, -0.02170397713780403, -0.05739177390933037, 0.005925025325268507, -0.07930614799261093, 0.137408047914505, 0.017562543973326683, 0.04622232913970947, 0.027515241876244545, 0.027436144649982452, 0.018588175997138023, 0.004503807984292507, 0.021820982918143272, -0.08468001335859299, 0.08908464014530182, 0.07250522822141647, 0.020316563546657562, -0.08273280411958694, 0.04405013471841812, -0.022231735289096832, 0.014862153679132462, 0.038597412407398224, 0.03031317889690399, 0.061423856765031815, -0.012558488175272942, -0.055344682186841965, -0.0018919823924079537, -0.07665809988975525, -0.016824893653392792, 0.050464216619729996, -0.00357417156919837, -0.05618833750486374, -0.15275031328201294, 0.04941688850522041, -0.06676385551691055, -0.056054454296827316, 0.04359078034758568, -0.05236506089568138, -0.029834026470780373, 0.028620649129152298, -0.025159494951367378, -0.0587918683886528, -0.0703502744436264, 0.07646499574184418, -0.05493784695863724, 0.0710410475730896, -0.06597091257572174, -0.08634699881076813, -0.16756334900856018, 0.01845960132777691, -0.022447410970926285, -0.03926842659711838, 0.07917698472738266, -0.02364439144730568, 0.014074575155973434, 0.013737611472606659, 0.03448419272899628, -0.018709572032094002, -0.026274243369698524, 0.02445005625486374, -0.08247654885053635, -0.036668531596660614, -0.022490642964839935, -0.04927549511194229, 0.09152866899967194, -0.015470282174646854, -0.003777889534831047, -0.05837828665971756, 0.018777774646878242, 0.019315535202622414, 0.17089319229125977, 0.0035293952096253633, -0.002445742953568697, -0.009234469383955002, 0.02196548320353031, 0.10734690725803375, -0.002021083375439048, -0.0012763900449499488, -0.020174488425254822, -0.05045972391963005, 0.08091080188751221, -0.011431857012212276, 0.08671028912067413, 0.034442704170942307, -0.026053933426737785, 0.049069877713918686, 0.0013618639204651117, -0.013132759369909763, 0.07689011096954346, -0.04989981651306152, 0.054785747081041336, -0.043564192950725555, 0.02618328295648098, -0.014225582592189312, -0.022566767409443855, -0.06264572590589523, -0.034698326140642166, -0.0001107764765038155, -0.06152806431055069, 0.0036162040196359158, 0.01230692770332098, -0.05581643059849739, 0.010127565823495388, -0.05308711528778076, -0.05022891238331795, 0.0056801652535796165, -0.08951827138662338, -0.03046564571559429, 0.08251140266656876, 0.04728938266634941, -0.060433242470026016, 0.0033412182237952948, 0.012290587648749352, 0.07780375331640244, -0.02360345609486103, -0.07125856727361679, 0.049685221165418625, 0.07224086672067642, 0.11575620621442795, 0.008243431337177753, -0.012308630160987377, 0.053591471165418625, -0.07608630508184433, 0.029831329360604286, 0.013562287203967571, 0.024182721972465515, -0.017201408743858337, -0.03160925954580307, 0.03825448825955391, 0.008620260283350945, -0.03325319662690163, 0.01760943979024887, 0.06543662399053574, 0.04450875148177147, 0.010917714796960354, 0.009390872903168201, 0.03062949702143669, -0.0076032583601772785, -0.049751076847314835, -0.015538417734205723, -0.032042618840932846, 0.11950680613517761, -0.028337452560663223, 0.04041427746415138, 0.14753589034080505, 0.051742952316999435, 0.021051540970802307, 0.06310559809207916, -0.02798588015139103, 0.08760247379541397, 0.006532905623316765, 0.14526154100894928, -0.015541037544608116, -0.07818841189146042, -0.00386637425981462, -0.012766157276928425, 0.04967696964740753, -0.04228254780173302, -0.008131932467222214, 0.039440806955099106, 0.017025263980031013, 0.029931651428341866, -0.05010100454092026, 0.06069578975439072, -0.01839270070195198, -0.013055648654699326, 0.019720539450645447, 0.08475974947214127, 0.013340308330953121, 0.05732417106628418, -0.08631827682256699, 0.059385668486356735, -0.06374119222164154, -0.049451734870672226, 0.04297780618071556, -0.02166394330561161, 0.03173642233014107, -0.03146092966198921, -0.08326373249292374, 0.02655809000134468, -0.016991138458251953, -0.06750057637691498, -0.012286640703678131, 0.0010668501490727067, -0.014213801361620426, 0.03157174214720726, -0.052248887717723846, 0.05456520989537239, 0.11080439388751984, -0.06336615234613419, -0.03109496831893921, -0.0804644376039505, 0.006365587003529072, -0.016252659261226654, 0.039697032421827316, -0.03961373120546341, -0.02783684805035591, 0.07045438140630722, -0.05832531303167343, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.26078736782073975, -0.04141460731625557, 0.0, 0.0, -0.011947153136134148, 0.0, -0.02043531835079193, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07810815423727036, 0.0, 0.0, -0.025322146713733673, -0.021555209532380104, -0.07156489044427872, 0.0, 0.0, 0.0, 0.0, -0.11648621410131454, 0.031780462712049484, 0.1278366893529892, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.116255983710289, 0.07236123085021973, 0.03442956134676933, 0.0, 0.0, -0.1583525538444519, 0.0, 0.0, 0.0, 0.0, -0.12039731442928314, 0.0, 0.0, 0.0, 0.02976030483841896, 0.0, -0.024193869903683662, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0072584911249578, -0.07561428099870682, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.054427411407232285, 0.04511762410402298, 0.0, 0.0, 0.0, -0.15591853857040405, 0.10208409279584885, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.08332417905330658, 0.0, 0.0, 0.0, 0.0, -0.011994187720119953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.042864102870225906, 0.0, 0.04319864511489868, 0.0, 0.09600488096475601, 0.0, 0.04153875634074211, 0.0, 0.0, 0.0, 0.05101964250206947, -0.11683668196201324, 0.0, -0.06753823906183243, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0383356437087059, 0.03771863132715225, 0.04175252839922905, 0.010017745196819305, -0.05751395970582962, -0.03792840614914894, -0.0937972366809845, -0.019642073661088943, 0.057318732142448425, -0.026970149949193, 0.026251478120684624, 0.0648733451962471, -0.12652482092380524, -0.015095271170139313, -0.08382508903741837, 0.07013081759214401, -0.002245674841105938, 0.008431381545960903, -0.027580611407756805, 0.07550489157438278, 0.041026435792446136, -0.016500204801559448, -0.014965462498366833, -0.03379667177796364, -0.03146945685148239, -0.06259060651063919, -0.013681524433195591, 0.014097284525632858, 0.050641197711229324, 0.05133596435189247, -0.07745523750782013, -0.06938300281763077, -0.14050441980361938, -0.0475454106926918, 0.026918312534689903, -0.015482773073017597, -0.06362009048461914, -0.05587482824921608, -0.0510423444211483, -0.05997798964381218, 0.031812556087970734, -0.03642956539988518, -0.06177765130996704, 0.046211618930101395, -0.04469788447022438, -0.0008917557424865663, 0.03602195158600807, 0.022225279361009598, 0.052277181297540665, -0.030573705211281776, -0.03179909288883209, -0.030528515577316284, -0.0004877384926658124, -0.0005554874078370631, 0.046489786356687546, -0.014454968273639679, -0.02400290220975876, -0.0032705236226320267, -0.04640588536858559, 0.02617749571800232, -0.03544134274125099, -0.05857739970088005, 0.0002576441038399935, -0.020024964585900307, 0.020577475428581238, -0.07063407450914383, 0.009608197025954723, 0.05706772580742836, 0.09540875256061554, -0.011207109317183495, -0.09445955604314804, -0.04102757200598717, 0.06686481088399887, -0.08190406113862991, -0.08889014273881912, 0.012513328343629837, 0.07017087936401367, 0.08179359138011932, 0.08599081635475159, -0.0023058783262968063, 0.043315403163433075, -0.061055682599544525, 0.14925910532474518, 0.06919527798891068, -0.000200674359803088, 0.06054820492863655, -0.01568685472011566, 0.025515977293252945, 0.09026706963777542, -0.011866739019751549, -0.09469518065452576, -0.010738806799054146, 0.1180713102221489, -0.021613607183098793, 0.0743296667933464, -0.06580383330583572, 0.03452248126268387, -0.05821526423096657, -0.013256930746138096, -0.1061810627579689, 0.021834244951605797, 0.04914559796452522, 0.08007513731718063, 0.022769322618842125, -0.0013164140982553363, -0.0274383332580328, -0.0472942590713501, -0.09362781047821045, 0.09019148349761963, -0.017591651529073715, -0.005589867942035198, 0.013755992986261845, -0.13341714441776276, 0.0011952678905799985, 0.005004548933357, -0.029787087813019753, -0.05613655969500542, 0.055325090885162354, 0.08982843160629272, 0.05322820693254471, -0.03743863105773926, -0.019141459837555885, -0.00701902573928237, -0.004055540543049574, 0.03443831205368042, 0.025469092652201653, 0.037712812423706055, 0.011830746196210384, -0.08496560156345367, 0.05180276930332184, 0.052730850875377655, 0.00244692200794816, 0.04022414982318878, -0.038521017879247665, -0.03969975560903549, 0.03449808806180954, 0.08938043564558029, -0.042106594890356064, -0.0017152040963992476, -0.00016503770893905312, -0.02158789336681366, 0.10519043356180191, -0.0019344021566212177, 0.08883883059024811, -0.09451425820589066, 0.03283997252583504, -0.05713285133242607, 0.05798697471618652, 0.0039007323794066906, 0.05501514673233032, -0.059636685997247696, -0.022920269519090652, -0.039060354232788086, -0.0444902703166008, -0.09592243283987045, 0.03234732151031494, -0.0853579118847847, -0.0555243082344532, -0.029872171580791473, 0.09014902263879776, -0.09516578912734985, 0.17798306047916412, -0.052431486546993256, 0.01680145598948002, 0.018374770879745483, -0.01934719830751419, 0.0334763340651989, 0.12820878624916077, 0.10495088994503021, -0.056222472339868546, 0.012443841435015202, 0.06117534264922142, 0.07372154295444489, -0.146345853805542, -0.06297747790813446, -0.11616487056016922, 0.025794843211770058, 0.06928903609514236, -0.055684853345155716, 0.05194629356265068, -0.09076684713363647, 0.043250489979982376, 0.002496603410691023, -0.04983661323785782, 0.08306154608726501, 0.0689687505364418, -0.10477741807699203, 0.08446181565523148, 0.028737124055624008, -0.10554316639900208, -0.07227646559476852, 0.06028304994106293, 0.13438726961612701, -0.018474513664841652, -0.0500834695994854, 0.011733565479516983, 0.03724290803074837, 0.049806348979473114, -0.029314903542399406, -0.07272937148809433, -0.04518107697367668, 0.07860397547483444, 0.01481136865913868, 0.12039242684841156, 0.0058028376661241055, -0.03334954380989075, -0.0637706071138382, 0.0331452377140522, 0.09146992862224579, 0.04051864147186279, -0.007694820873439312, 0.027361053973436356, -0.12709718942642212, -0.06480110436677933, 0.09247095882892609, -0.01159035973250866, -0.045780476182699203, -0.07050780951976776, 0.02705230563879013, -0.053999219089746475, 0.05256940424442291, 0.016404278576374054, 0.05830094590783119, 0.08317644149065018, 0.03479723259806633, -0.035504404455423355, 0.0337660126388073, 0.029436934739351273, 0.06948558986186981, -0.08364655077457428, -0.05376904085278511, -0.011519080027937889, -0.020604411140084267, 0.033282261341810226, -0.07212121784687042, 0.09828836470842361, 0.08516618609428406, -0.04038620367646217, 0.012143936939537525, -0.019138947129249573, -0.01972845569252968, -0.05065235495567322, 0.042912621051073074, -0.05205236002802849, 0.09151729941368103, -0.07050173729658127, 0.0910414382815361, 0.11697268486022949, -0.05766289681196213, -0.06095752492547035, -0.05423835664987564, -0.030191846191883087, -0.015662452206015587, -0.001722560147754848, -0.013289855793118477, 0.09511920064687729, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.017239468172192574, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.014331732876598835, 0.0, 0.0, 0.0, 0.0, 0.14296218752861023, 0.0, 0.0, -0.15629790723323822, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.09406696259975433, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.09040746092796326, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1273038387298584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.021125098690390587]]\n"
]
}
],
"source": [
"import erniebot\n",
"erniebot.api_type = 'aistudio'\n",
"erniebot.access_token = '<eb-access-token>'\n",
"\n",
"# 将需要向量化的文本转化为list[str]输入\n",
"response = erniebot.Embedding.create(\n",
" model='ernie-text-embedding',\n",
" input=[\n",
" \"我是百度公司开发的人工智能语言模型,我的中文名是文心一言,英文名是ERNIE-Bot,可以协助您完成范围广泛的任务并提供有关各种主题的信息,比如回答问题,提供定义和解释及建议。如果您有任何问题,请随时向我提问。\",\n",
" \"2018年深圳市各区GDP\"\n",
" ])\n",
"\n",
"# 使用response.get_result()获得模型返回结果,维度为(n,384)\n",
"print(response.get_result())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.3 文生图(Image Generation)\n",
"\n",
"文生图是指根据文本提示、图像尺寸等信息,使用文心大模型,自动创作图片。\n",
"\n",
"ERNIE Bot SDK提供具备文生图能力的**ernie-vilg-v2**大模型。"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<img src=\"http://aigc-t2p.bj.bcebos.com/artist-long/118470787_0_final.png?authorization=bce-auth-v1%2F174bf5e9a7a84f55a8e85b1cc5d62b1d%2F2023-11-07T08%3A51%3A28Z%2F3600%2Fhost%2F8e4c096243272e66afd4713ef58bdf9e82a8e34635c37133c804ff13a7671b56\"/>"
],
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import erniebot\n",
"from IPython.display import Image\n",
"\n",
"# 注意需api_type与Chat Completion和Embedding不同\n",
"erniebot.api_type = 'yinian'\n",
"erniebot.access_token = None\n",
"erniebot.ak = '<eb-ak>'\n",
"erniebot.sk = '<eb-sk>'\n",
"\n",
"response = erniebot.Image.create(\n",
" model='ernie-vilg-v2',\n",
" prompt=\"雨后的桃花,8k,辛烷值渲染\",\n",
" width=512,\n",
" height=512\n",
")\n",
"\n",
"Image(url=response.get_result()[0])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ernie",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|