Spaces:
Running
Running
Raine Hoang
commited on
Commit
·
56227e8
1
Parent(s):
374050a
moved imports, hyperlink author, error handling
Browse files- polars/02_dataframes.py +20 -14
polars/02_dataframes.py
CHANGED
|
@@ -10,17 +10,8 @@
|
|
| 10 |
|
| 11 |
import marimo
|
| 12 |
|
| 13 |
-
__generated_with = "0.13.
|
| 14 |
-
app = marimo.App(
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
@app.cell
|
| 18 |
-
def _():
|
| 19 |
-
import marimo as mo
|
| 20 |
-
import polars as pl
|
| 21 |
-
import numpy as np
|
| 22 |
-
import pandas as pd
|
| 23 |
-
return mo, np, pd, pl
|
| 24 |
|
| 25 |
|
| 26 |
@app.cell(hide_code=True)
|
|
@@ -28,7 +19,7 @@ def _(mo):
|
|
| 28 |
mo.md(
|
| 29 |
r"""
|
| 30 |
# DataFrames
|
| 31 |
-
Author: Raine Hoang
|
| 32 |
|
| 33 |
In this tutorial, we will go over the central data structure for structured data, DataFrames. There are a multitude of packages that work with DataFrames, but we will be focusing on the way Polars uses them the different options it provides.
|
| 34 |
|
|
@@ -378,7 +369,10 @@ def _(mo):
|
|
| 378 |
|
| 379 |
@app.cell
|
| 380 |
def _(pl, seq_data):
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
| 382 |
return
|
| 383 |
|
| 384 |
|
|
@@ -410,7 +404,10 @@ def _(mo):
|
|
| 410 |
def _(pl):
|
| 411 |
data = [[1, "a", 2]]
|
| 412 |
|
| 413 |
-
|
|
|
|
|
|
|
|
|
|
| 414 |
return
|
| 415 |
|
| 416 |
|
|
@@ -510,5 +507,14 @@ def _(mo):
|
|
| 510 |
return
|
| 511 |
|
| 512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
if __name__ == "__main__":
|
| 514 |
app.run()
|
|
|
|
| 10 |
|
| 11 |
import marimo
|
| 12 |
|
| 13 |
+
__generated_with = "0.13.10"
|
| 14 |
+
app = marimo.App()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
@app.cell(hide_code=True)
|
|
|
|
| 19 |
mo.md(
|
| 20 |
r"""
|
| 21 |
# DataFrames
|
| 22 |
+
Author: [*Raine Hoang*](https://github.com/Jystine)
|
| 23 |
|
| 24 |
In this tutorial, we will go over the central data structure for structured data, DataFrames. There are a multitude of packages that work with DataFrames, but we will be focusing on the way Polars uses them the different options it provides.
|
| 25 |
|
|
|
|
| 369 |
|
| 370 |
@app.cell
|
| 371 |
def _(pl, seq_data):
|
| 372 |
+
try:
|
| 373 |
+
pl.DataFrame(seq_data, schema_overrides = {"column_0": pl.String})
|
| 374 |
+
except Exception as e:
|
| 375 |
+
print(f"Error: {e}")
|
| 376 |
return
|
| 377 |
|
| 378 |
|
|
|
|
| 404 |
def _(pl):
|
| 405 |
data = [[1, "a", 2]]
|
| 406 |
|
| 407 |
+
try:
|
| 408 |
+
pl.DataFrame(data = data, strict = True)
|
| 409 |
+
except Exception as e:
|
| 410 |
+
print(f"Error: {e}")
|
| 411 |
return
|
| 412 |
|
| 413 |
|
|
|
|
| 507 |
return
|
| 508 |
|
| 509 |
|
| 510 |
+
@app.cell
|
| 511 |
+
def _():
|
| 512 |
+
import marimo as mo
|
| 513 |
+
import polars as pl
|
| 514 |
+
import numpy as np
|
| 515 |
+
import pandas as pd
|
| 516 |
+
return mo, np, pd, pl
|
| 517 |
+
|
| 518 |
+
|
| 519 |
if __name__ == "__main__":
|
| 520 |
app.run()
|