Spaces:
Sleeping
Sleeping
import gradio as gr | |
import kagglehub | |
import os | |
from processing import analyze_pneumothorax | |
# Download dataset | |
dataset_path = kagglehub.dataset_download("kmader/siim-medical-images") | |
print("Path to dataset files:", dataset_path) | |
# Find a DICOM file in the dataset (for testing) | |
def find_dicom_file(dataset_path): | |
for root, _, files in os.walk(dataset_path): | |
for file in files: | |
if file.endswith(".dcm"): | |
return os.path.join(root, file) | |
return None | |
test_dicom_path = find_dicom_file(dataset_path) | |
if test_dicom_path is None: | |
print("No DICOM files found in the dataset.") | |
else: | |
print(f"Found a DICOM file for testing: {test_dicom_path}") | |
iface = gr.Interface( | |
fn=analyze_pneumothorax, | |
inputs=gr.File(type="filepath", label="Upload DICOM Image"), | |
outputs=gr.Image(type="pil", label="Segmented Image"), | |
title="Pneumothorax Segmentation", | |
description="This is a simplified application that uses machine learning to analyze images using segmentation." | |
) | |
iface.launch() |