# Copyright (c) Meta Platforms, Inc. and affiliates. # Adapted from Hierarchical-Localization, Paul-Edouard Sarlin, ETH Zurich # https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/utils/viz.py # Released under the Apache License 2.0 import numpy as np import torch import matplotlib.pyplot as plt import matplotlib.patches as mpatches def features_to_RGB(*Fs, masks=None, skip=1): """Project a list of d-dimensional feature maps to RGB colors using PCA.""" from sklearn.decomposition import PCA def normalize(x): return x / np.linalg.norm(x, axis=-1, keepdims=True) if masks is not None: assert len(Fs) == len(masks) flatten = [] for i, F in enumerate(Fs): c, h, w = F.shape F = np.rollaxis(F, 0, 3) F_flat = F.reshape(-1, c) if masks is not None and masks[i] is not None: mask = masks[i] assert mask.shape == F.shape[:2] F_flat = F_flat[mask.reshape(-1)] flatten.append(F_flat) flatten = np.concatenate(flatten, axis=0) flatten = normalize(flatten) pca = PCA(n_components=3) if skip > 1: pca.fit(flatten[::skip]) flatten = pca.transform(flatten) else: flatten = pca.fit_transform(flatten) flatten = (normalize(flatten) + 1) / 2 Fs_rgb = [] for i, F in enumerate(Fs): h, w = F.shape[-2:] if masks is None or masks[i] is None: F_rgb, flatten = np.split(flatten, [h * w], axis=0) F_rgb = F_rgb.reshape((h, w, 3)) else: F_rgb = np.zeros((h, w, 3)) indices = np.where(masks[i]) F_rgb[indices], flatten = np.split(flatten, [len(indices[0])], axis=0) F_rgb = np.concatenate([F_rgb, masks[i][..., None]], axis=-1) Fs_rgb.append(F_rgb) assert flatten.shape[0] == 0, flatten.shape return Fs_rgb def one_hot_argmax_to_rgb(y, num_class): ''' Args: probs: (B, C, H, W) num_class: int 0: road 0 1: crossing 1 2: explicit_pedestrian 2 4: building 6: terrain 7: parking ` ''' class_colors = { 'road': (68, 68, 68), # 0: Black 'crossing': (244, 162, 97), # 1; Red 'explicit_pedestrian': (233, 196, 106), # 2: Yellow # 'explicit_void': (128, 128, 128), # 3: White 'building': (231, 111, 81), # 5: Magenta 'terrain': (42, 157, 143), # 7: Cyan 'parking': (204, 204, 204), # 8: Dark Grey 'predicted_void': (255, 255, 255) } class_colors = class_colors.values() class_colors = [torch.tensor(x).float() for x in class_colors] threshold = 0.25 argmaxed = torch.argmax((y > threshold).float(), dim=1) # Take argmax argmaxed[torch.all(y <= threshold, dim=1)] = num_class # print(argmaxed.shape) seg_rgb = torch.ones( ( argmaxed.shape[0], 3, argmaxed.shape[1], argmaxed.shape[2], ) ) * 255 for i in range(num_class + 1): seg_rgb[:, 0, :, :][argmaxed == i] = class_colors[i][0] seg_rgb[:, 1, :, :][argmaxed == i] = class_colors[i][1] seg_rgb[:, 2, :, :][argmaxed == i] = class_colors[i][2] return seg_rgb def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True): """Plot a set of images horizontally. Args: imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). titles: a list of strings, as titles for each image. cmaps: colormaps for monochrome images. adaptive: whether the figure size should fit the image aspect ratios. """ n = len(imgs) if not isinstance(cmaps, (list, tuple)): cmaps = [cmaps] * n if adaptive: ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H else: ratios = [4 / 3] * n figsize = [sum(ratios) * 4.5, 4.5] fig, ax = plt.subplots( 1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios} ) if n == 1: ax = [ax] for i in range(n): ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) ax[i].get_yaxis().set_ticks([]) ax[i].get_xaxis().set_ticks([]) ax[i].set_axis_off() for spine in ax[i].spines.values(): # remove frame spine.set_visible(False) if titles: ax[i].set_title(titles[i]) # Create legend class_colors = { 'Road': (68, 68, 68), # 0: Black 'Crossing': (244, 162, 97), # 1; Red 'Sidewalk': (233, 196, 106), # 2: Yellow 'Building': (231, 111, 81), # 5: Magenta 'Terrain': (42, 157, 143), # 7: Cyan 'Parking': (204, 204, 204), # 8: Dark Grey } patches = [mpatches.Patch(color=[c/255.0 for c in color], label=label) for label, color in class_colors.items()] plt.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3) fig.tight_layout(pad=pad)