hocherie
add files
4187c6f
"""python3.9 -m mia.fpv.get_fpv --cfg mia/conf/example.yaml"""
import argparse
import itertools
import traceback
from functools import partial
from typing import Dict
from pathlib import Path
import tracemalloc
import copy
import json
import numpy as np
import asyncio
from tqdm import tqdm
from omegaconf import OmegaConf
import pandas as pd
from .. import logger
from .geo import Projection
from .download import (
MapillaryDownloader,
fetch_image_infos,
fetch_images_pixels,
get_city_boundary,
get_tiles_from_boundary,
)
from .prepare import process_sequence, default_cfg
from .filters import in_shape_filter, FilterPipeline
class JSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.generic):
return obj.item()
return json.JSONEncoder.default(self, obj)
def write_json(path, data):
with open(path, "w") as f:
json.dump(data, f, cls=JSONEncoder)
def get_token(token: str) -> str:
if Path(token).is_file():
logger.info(f"Reading token from file {token}")
with open(token, 'r') as file:
token = file.read().strip()
if not token.startswith("MLY"):
logger.fatal(f"The token '{token}' is invalid")
exit(1)
else:
logger.info(f"Using token {token}")
return token
def fetch_city_boundaries(cities: list):
"""
Args:
cities: List of dictionaries describing the city/region to fetch in the fpv.yaml format.
"""
data = []
pbar = tqdm(cities)
for loc_info in pbar:
loc_fmt = loc_info["name"]
if "state" in loc_info:
loc_fmt = f"{loc_fmt}, {loc_info['state']}"
else:
loc_info["state"] = ""
if "country" in loc_info:
loc_fmt = f"{loc_fmt}, {loc_info['country']}"
else:
loc_info["country"] = ""
pbar.set_description(f"Getting boundary for {loc_fmt}")
entry = copy.copy(dict(loc_info))
get_city_boundary_ = partial(get_city_boundary, loc_info["name"], loc_info["state"], loc_info["country"])
if "bound_type" not in loc_info:
assert "sequence_ids" in loc_info
raise NotImplementedError()
elif loc_info["bound_type"] == "custom_bbox":
assert "custom_bbox" in loc_info
entry["bbox"] = dict(zip(["west", "south", "east", "north"],
[float(x) for x in loc_info["custom_bbox"].split(",")]))
elif loc_info["bound_type"] == "auto_shape":
entry["bbox"], entry["shape"] = get_city_boundary_(fetch_shape=True)
elif loc_info["bound_type"] == "auto_bbox":
entry["bbox"] = get_city_boundary_(fetch_shape=False)
elif loc_info["bound_type"] == "custom_size":
assert "custom_size" in loc_info
custom_size = loc_info["custom_size"]
bbox = get_city_boundary_(fetch_shape=False)
# Calculation below is obviously not very accurate.
# Good enough for small bounding boxes
bbox_center = [(bbox['west'] + bbox['east'])/2, (bbox['south'] + bbox['north'])/2]
bbox['west'] = bbox_center[0] - custom_size / (111.32*np.cos(np.deg2rad(bbox_center[1])))
bbox['east'] = bbox_center[0] + custom_size / (111.32*np.cos(np.deg2rad(bbox_center[1])))
bbox['south'] = bbox_center[1] - custom_size / 111.32
bbox['north'] = bbox_center[1] + custom_size / 111.32
entry["bbox"] = bbox
entry["custom_size"] = custom_size
else:
raise Exception(f"Unsupported bound_type type '{loc_info['bound_type']}'")
data.append(entry)
return data
def geojson_feature_list_to_pandas(feature_list, split_coords=True):
t = pd.json_normalize(feature_list)
cols_to_drop = ["type", "geometry.type", "properties.organization_id", "computed_geometry.type"]
if split_coords:
t[['geometry.long','geometry.lat']] = pd.DataFrame(t["geometry.coordinates"].tolist(), index=t.index)
# Computed geometry maybe nan if its not available so we check if the value could be a nan (a float type)
if "computed_geometry.coordinates" in t.columns:
t["computed_geometry.long"] = t["computed_geometry.coordinates"].map(lambda x: (x if isinstance(x, float) else x[0]) )
t["computed_geometry.lat"] = t["computed_geometry.coordinates"].map(lambda x: (x if isinstance(x, float) else x[1]) )
t.drop(columns=cols_to_drop, inplace=True, errors="ignore")
t.columns = t.columns.str.removeprefix('properties.')
t["id"] = t["id"].astype(str)
return t
def parse_image_points_json_data(rd: dict, combine=True) -> pd.DataFrame:
"""
Parse the json in to a pandas dataframe
"""
df_dict = dict()
for tile, feature_list in tqdm(rd.items(), total=len(rd)):
if len(feature_list) == 0:
continue
df_dict[tile] = geojson_feature_list_to_pandas(feature_list)
if combine:
logger.info(f"Joining all dataframes into one.")
return pd.concat(df_dict.values())
else:
return df_dict
def log_memory_usage():
current, peak = tracemalloc.get_traced_memory()
current_gb = current / 10**9
peak_gb = peak / 10**9
logger.info(f"Current memory: {current_gb:.3f} GB; Peak was {peak_gb:.3f} GB")
def main(args, cfgs):
pipeline = FilterPipeline.load_from_yaml(cfgs.fpv_options.filter_pipeline_cfg)
# setup the mapillary downloader
tracemalloc.start()
token = get_token(args.token)
downloader = MapillaryDownloader(token)
loop = asyncio.get_event_loop()
# setup file structure
dataset_dir = Path(cfgs.dataset_dir)
dataset_dir.mkdir(exist_ok=True, parents=True)
# Fetch the bounds for the cities
logger.info(f"Auto fetching boundaries for cities if needed.")
cities_bounds_info = fetch_city_boundaries(cfgs.cities)
log_memory_usage()
# loop through the cities and collect the mapillary data (images, metadata, etc.)
for city_boundary_info in cities_bounds_info:
# Clear out dataframes since we may use None checks to see if we need
# to load the dataframe for a particular stage
df = None
df_meta = None
df_meta_filtered = None
df_meta_filtered_processed = None
logger.info(f"Processing {city_boundary_info['name']}")
# setup the directories
location_name = city_boundary_info['name'].lower().replace(" ", "_")
location_dir = dataset_dir / location_name
infos_dir = location_dir / "image_infos_chunked"
raw_image_dir = location_dir / "images_raw"
out_image_dir = location_dir / "images"
for d in (infos_dir, raw_image_dir, out_image_dir, location_dir):
if not d.exists():
logger.info(f"{d} does not exist. Creating directory {d}")
d.mkdir(parents=True, exist_ok=True)
write_json(location_dir / "boundary_info.json", city_boundary_info)
# Stage 1: collect the id of the images in the specified bounding box
if cfgs.fpv_options.stages.get_image_points_from_tiles:
logger.info(f"[{location_name}] Stage 1 (Downloading image IDs) ------------------")
tiles = get_tiles_from_boundary(city_boundary_info)
logger.info(f"[{location_name}] Found {len(tiles)} zoom-14 tiles for this boundary. Starting image point download")
image_points_response = loop.run_until_complete(
downloader.get_tiles_image_points(tiles)
)
if image_points_response is None:
logger.warn(f"[{location_name}] No image points found in boundary. Skipping city")
continue
write_json(location_dir / 'images_points_dump.json', image_points_response)
# parse the data into a geopandas dataframe
logger.info(f"[{location_name}] Parsing image point json data into dataframe")
df = parse_image_points_json_data(image_points_response)
# Filter if needed
if city_boundary_info["bound_type"] == "auto_shape":
old_count = df.shape[0]
df = df[in_shape_filter(df, city_boundary_info["shape"])]
new_count = df.shape[0]
logger.info(f"[{location_name}] Keeping {new_count}/{old_count} ({new_count/old_count*100:.2f}%) "
"points that are within city boundaries")
df.to_parquet(location_dir / 'image_points.parquet')
# Stage 2: download the metadata
if cfgs.fpv_options.stages.get_metadata:
logger.info(f"[{location_name}] Stage 2 (Downloading Metadata) ------------------")
if df is None:
pq_name = 'image_points.parquet'
df = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df.shape[0]} image points from {pq_name}")
log_memory_usage()
# chunk settings
chunk_size = cfgs.fpv_options.metadata_download_chunk_size
num_split = int(np.ceil(df.shape[0] / chunk_size))
logger.info(f"[{location_name}] Splitting the {df.shape[0]} image points into {num_split} chunks of {chunk_size} image points each.")
# check if the metadata chunk has already been downloaded
num_downloaded_chunks = 0
num_of_chunks_in_dir = len(list(infos_dir.glob("image_metadata_chunk_*.parquet")))
df_meta_chunks = list()
df_meta = pd.DataFrame()
if infos_dir.exists() and num_of_chunks_in_dir > 0:
logger.info(f"[{location_name}] Found {len(list(infos_dir.glob('image_metadata_chunk_*.parquet')))} existing metadata chunks.")
downloaded_ids = []
num_downloaded_data_pts = 0
pbar = tqdm(infos_dir.glob("image_metadata_chunk_*.parquet"), total=num_of_chunks_in_dir)
for chunk_fp in pbar:
pbar.set_description(f"Loading {chunk_fp}")
chunk_df = pd.read_parquet(chunk_fp)
df_meta_chunks.append(chunk_df)
num_downloaded_chunks += 1
num_downloaded_data_pts += len(chunk_df)
log_memory_usage()
num_pts_left = df.shape[0] - num_downloaded_data_pts
df_meta = pd.concat(df_meta_chunks)
df_meta_chunks.clear()
df = df[~df["id"].isin(df_meta["id"])]
# some quick checks to make sure the data is consistent
left_num_split = int(np.ceil(df.shape[0] / chunk_size))
# if num_downloaded_chunks != (num_split - left_num_split):
# raise ValueError(f"Number of downloaded chunks {num_downloaded_chunks} does not match the number of chunks {num_split - left_num_split}")
if num_pts_left != len(df):
raise ValueError(f"Number of points left {num_pts_left} does not match the number of points in the dataframe {len(df)}")
if num_pts_left > 0:
logger.info(f"Restarting metadata download with {num_pts_left} points, {left_num_split} chunks left to download.")
# download the metadata
num_split = int(np.ceil(df.shape[0] / chunk_size))
groups = df.groupby(np.arange(len(df.index)) // chunk_size)
for (frame_num, frame) in groups:
frame_num = frame_num + num_downloaded_chunks
logger.info(f"[{location_name}] Fetching metadata for {frame_num+1}/{num_split} chunk of {frame.shape[0]} image points.")
image_ids = frame["id"]
image_infos, num_fail = loop.run_until_complete(
fetch_image_infos(image_ids, downloader, infos_dir)
)
logger.info("%d failures (%.1f%%).", num_fail, 100 * num_fail / len(image_ids))
if num_fail == len(image_ids):
logger.warn(f"[{location_name}] All images failed to be fetched. Skipping next steps")
continue
new_df_meta = geojson_feature_list_to_pandas(image_infos.values())
df_meta_chunks.append(new_df_meta)
new_df_meta.to_parquet(infos_dir / f'image_metadata_chunk_{frame_num}.parquet')
log_memory_usage()
# Combine all new chunks into one DF
df_meta = pd.concat([df_meta] + df_meta_chunks)
df_meta_chunks.clear()
# Some standardization of the data
df_meta["model"] = df_meta["model"].str.lower().str.replace(' ', '').str.replace('_', '')
df_meta["make"] = df_meta["make"].str.lower().str.replace(' ', '').str.replace('_', '')
df_meta.to_parquet(location_dir / 'image_metadata.parquet')
# Stage 3: run filter pipeline
if cfgs.fpv_options.stages.run_filter:
logger.info(f"[{location_name}] Stage 3 (Filtering) ------------------")
if df_meta is None:
pq_name = 'image_metadata.parquet'
df_meta = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df_meta.shape[0]} image metadata from {pq_name}")
df_meta_filtered = pipeline(df_meta)
df_meta_filtered.to_parquet(location_dir / f'image_metadata_filtered.parquet')
if df_meta_filtered.shape[0] == 0:
logger.warning(f"[{location_name}] No images to download. Moving on to next location.")
continue
else:
logger.info(f"[{location_name}] {df_meta_filtered.shape[0]} images to download.")
# Stage 4: Download filtered images
if cfgs.fpv_options.stages.download_images:
logger.info(f"[{location_name}] Stage 4 (Downloading Images) ------------------")
if df_meta_filtered is None:
pq_name = f'image_metadata_filtered.parquet'
df_meta_filtered = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df_meta_filtered.shape[0]} image metadata from {pq_name}")
log_memory_usage()
# filter out the images that have already been downloaded
downloaded_image_fps = list(raw_image_dir.glob("*.jpg"))
downloaded_image_ids = [fp.stem for fp in downloaded_image_fps]
df_to_download = df_meta_filtered[~df_meta_filtered["id"].isin(downloaded_image_ids)]
logger.info(f"[{location_name}] {len(downloaded_image_ids)} images already downloaded. {df_to_download.shape[0]} images left to download.")
# download the images
image_urls = list(df_to_download.set_index("id")["thumb_2048_url"].items())
if len(image_urls) > 0:
num_fail = loop.run_until_complete(
fetch_images_pixels(image_urls, downloader, raw_image_dir)
)
logger.info("%d failures (%.1f%%).", num_fail, 100 * num_fail / len(image_urls))
# Stage 5: process the sequences
if cfgs.fpv_options.stages.to_process_sequence:
logger.info(f"[{location_name}] Stage 5 (Sequence Processing) ------------------")
if df_meta_filtered is None:
pq_name = f'image_metadata_filtered.parquet'
df_meta_filtered = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df_meta_filtered.shape[0]} image metadata from {pq_name}")
log_memory_usage()
# prepare the data for processing
seq_to_image_ids = df_meta_filtered.groupby('sequence')['id'].agg(list).to_dict()
lon_center = (city_boundary_info['bbox']['east'] + city_boundary_info['bbox']['west']) / 2
lat_center = (city_boundary_info['bbox']['north'] + city_boundary_info['bbox']['south']) / 2
projection = Projection(lat_center, lon_center, max_extent=50e3) # increase to 50km max extent for the projection, otherwise it will throw an error
df_meta_filtered.index = df_meta_filtered["id"]
image_infos = df_meta_filtered.to_dict(orient="index")
process_sequence_args = default_cfg
log_memory_usage()
# process the sequences
dump = {}
logger.info(f"[{location_name}] Processing downloaded sequences..")
processed_ids = list()
for seq_id, seq_image_ids in tqdm(seq_to_image_ids.items()):
try:
d, pi = process_sequence(
seq_image_ids,
image_infos,
projection,
process_sequence_args,
raw_image_dir,
out_image_dir,
)
if d is None or pi is None:
raise Exception("process_sequence returned None")
processed_ids.append(pi)
# TODO We shouldn't need dumps
dump.update(d)
except Exception as e:
logger.error(f"[{location_name}] Failed to process sequence {seq_id} skipping it. Error: {repr(e)}.")
logger.error(traceback.format_exc())
write_json(location_dir / "dump.json", dump)
# TODO: Ideally we want to move the keyframe selection filter to
# The filtering pipeline such that we do not download unnecessary
# Raw Images. But for now, we will filter the dataframe one more time after processing
processed_ids = list(itertools.chain.from_iterable(processed_ids))
df_meta_filtered_processed = df_meta_filtered[ df_meta_filtered["id"].isin(processed_ids)]
logger.info(f"[{location_name}] Final yield after processing is {df_meta_filtered_processed.shape[0]} images.")
df_meta_filtered_processed.to_parquet(location_dir / f'image_metadata_filtered_processed.parquet')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", type=str, default="mia/conf/example.yaml", help="Path to config yaml file.")
parser.add_argument("--token", type=str, default='mapillary_key', help="Either a token string or a path to a file containing the token.")
args = parser.parse_args()
cfgs = OmegaConf.load(args.cfg)
main(args, cfgs)