Spaces:
Building
Building
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# Adapted from Hierarchical-Localization, Paul-Edouard Sarlin, ETH Zurich | |
# https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/utils/viz.py | |
# Released under the Apache License 2.0 | |
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as mpatches | |
def features_to_RGB(*Fs, masks=None, skip=1): | |
"""Project a list of d-dimensional feature maps to RGB colors using PCA.""" | |
from sklearn.decomposition import PCA | |
def normalize(x): | |
return x / np.linalg.norm(x, axis=-1, keepdims=True) | |
if masks is not None: | |
assert len(Fs) == len(masks) | |
flatten = [] | |
for i, F in enumerate(Fs): | |
c, h, w = F.shape | |
F = np.rollaxis(F, 0, 3) | |
F_flat = F.reshape(-1, c) | |
if masks is not None and masks[i] is not None: | |
mask = masks[i] | |
assert mask.shape == F.shape[:2] | |
F_flat = F_flat[mask.reshape(-1)] | |
flatten.append(F_flat) | |
flatten = np.concatenate(flatten, axis=0) | |
flatten = normalize(flatten) | |
pca = PCA(n_components=3) | |
if skip > 1: | |
pca.fit(flatten[::skip]) | |
flatten = pca.transform(flatten) | |
else: | |
flatten = pca.fit_transform(flatten) | |
flatten = (normalize(flatten) + 1) / 2 | |
Fs_rgb = [] | |
for i, F in enumerate(Fs): | |
h, w = F.shape[-2:] | |
if masks is None or masks[i] is None: | |
F_rgb, flatten = np.split(flatten, [h * w], axis=0) | |
F_rgb = F_rgb.reshape((h, w, 3)) | |
else: | |
F_rgb = np.zeros((h, w, 3)) | |
indices = np.where(masks[i]) | |
F_rgb[indices], flatten = np.split(flatten, [len(indices[0])], axis=0) | |
F_rgb = np.concatenate([F_rgb, masks[i][..., None]], axis=-1) | |
Fs_rgb.append(F_rgb) | |
assert flatten.shape[0] == 0, flatten.shape | |
return Fs_rgb | |
def one_hot_argmax_to_rgb(y, num_class): | |
''' | |
Args: | |
probs: (B, C, H, W) | |
num_class: int | |
0: road 0 | |
1: crossing 1 | |
2: explicit_pedestrian 2 | |
4: building | |
6: terrain | |
7: parking ` | |
''' | |
class_colors = { | |
'road': (68, 68, 68), # 0: Black | |
'crossing': (244, 162, 97), # 1; Red | |
'explicit_pedestrian': (233, 196, 106), # 2: Yellow | |
# 'explicit_void': (128, 128, 128), # 3: White | |
'building': (231, 111, 81), # 5: Magenta | |
'terrain': (42, 157, 143), # 7: Cyan | |
'parking': (204, 204, 204), # 8: Dark Grey | |
'predicted_void': (255, 255, 255) | |
} | |
class_colors = class_colors.values() | |
class_colors = [torch.tensor(x).float() for x in class_colors] | |
threshold = 0.25 | |
argmaxed = torch.argmax((y > threshold).float(), dim=1) # Take argmax | |
argmaxed[torch.all(y <= threshold, dim=1)] = num_class | |
# print(argmaxed.shape) | |
seg_rgb = torch.ones( | |
( | |
argmaxed.shape[0], | |
3, | |
argmaxed.shape[1], | |
argmaxed.shape[2], | |
) | |
) * 255 | |
for i in range(num_class + 1): | |
seg_rgb[:, 0, :, :][argmaxed == i] = class_colors[i][0] | |
seg_rgb[:, 1, :, :][argmaxed == i] = class_colors[i][1] | |
seg_rgb[:, 2, :, :][argmaxed == i] = class_colors[i][2] | |
return seg_rgb | |
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True): | |
"""Plot a set of images horizontally. | |
Args: | |
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). | |
titles: a list of strings, as titles for each image. | |
cmaps: colormaps for monochrome images. | |
adaptive: whether the figure size should fit the image aspect ratios. | |
""" | |
n = len(imgs) | |
if not isinstance(cmaps, (list, tuple)): | |
cmaps = [cmaps] * n | |
if adaptive: | |
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H | |
else: | |
ratios = [4 / 3] * n | |
figsize = [sum(ratios) * 4.5, 4.5] | |
fig, ax = plt.subplots( | |
1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios} | |
) | |
if n == 1: | |
ax = [ax] | |
for i in range(n): | |
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) | |
ax[i].get_yaxis().set_ticks([]) | |
ax[i].get_xaxis().set_ticks([]) | |
ax[i].set_axis_off() | |
for spine in ax[i].spines.values(): # remove frame | |
spine.set_visible(False) | |
if titles: | |
ax[i].set_title(titles[i]) | |
# Create legend | |
class_colors = { | |
'Road': (68, 68, 68), # 0: Black | |
'Crossing': (244, 162, 97), # 1; Red | |
'Sidewalk': (233, 196, 106), # 2: Yellow | |
'Building': (231, 111, 81), # 5: Magenta | |
'Terrain': (42, 157, 143), # 7: Cyan | |
'Parking': (204, 204, 204), # 8: Dark Grey | |
} | |
patches = [mpatches.Patch(color=[c/255.0 for c in color], label=label) for label, color in class_colors.items()] | |
plt.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3) | |
fig.tight_layout(pad=pad) |