Spaces:
Building
Building
from multiprocessing import Pool | |
from tqdm import tqdm | |
from pathlib import Path | |
import numpy as np | |
from collections import deque | |
import argparse | |
import cv2 | |
def get_raycast_building_mask(building_grid): | |
laser_range = 200 | |
num_laser = 100 | |
robot_pos = (building_grid.shape[0] // 2-1, building_grid.shape[1] // 2 - 1) | |
unoccupied_pos = np.stack(np.where(building_grid != 1), axis=1) | |
if len(unoccupied_pos) == 0: | |
return None | |
l2_dist = unoccupied_pos - [robot_pos[0], robot_pos[1]] | |
closest = ((l2_dist ** 2).sum(1)**0.5).argmin() | |
robot_pos = (unoccupied_pos[closest][0], unoccupied_pos[closest][1]) | |
free_points, hit_points, actual_hit_points = get_free_points_in_front(building_grid, robot_pos, laser_range=laser_range, num_laser=num_laser) | |
free_points[:, 0][free_points[:, 0] >= building_grid.shape[0]] = building_grid.shape[0] - 1 | |
free_points[:, 1][free_points[:, 1] >= building_grid.shape[1]] = building_grid.shape[1] - 1 | |
free_points[:, 0][free_points[:, 0] < 0] = 0 | |
free_points[:, 1][free_points[:, 1] < 0] = 0 | |
hit_points[:, 0][hit_points[:, 0] >= building_grid.shape[0]] = building_grid.shape[0] - 1 | |
hit_points[:, 1][hit_points[:, 1] >= building_grid.shape[1]] = building_grid.shape[1] - 1 | |
hit_points[:, 0][hit_points[:, 0] < 0] = 0 | |
hit_points[:, 1][hit_points[:, 1] < 0] = 0 | |
if len(free_points) > 0: | |
# Get vis mask by flood filling free space boundary | |
inited_flood_grid = init_flood_fill(robot_pos, hit_points, building_grid.shape) | |
inited_flood_grid = (inited_flood_grid * 255).astype(np.uint8).copy() | |
# pick a seed point from free points, that is not 0 in inited_flood_grid. We want it to be unknown | |
np.random.shuffle(free_points) | |
for i in range(len(free_points)): | |
seed_point = free_points[i] | |
if inited_flood_grid[seed_point[0], seed_point[1]] != 0: | |
break # Found a valid seed point, exit the loop | |
else: | |
print('Unable to find a valid seed point') | |
return None | |
num_filled, flooded_image, mask, bounding_box = cv2.floodFill(inited_flood_grid.copy(), None, seedPoint=(seed_point[1], seed_point[0]), newVal=0) | |
# name = names[batch_ind][-1] | |
return flooded_image | |
else: | |
print("No free points") | |
return None | |
def flood_fill_simple(center_point, occupancy_map): | |
""" | |
center_point: starting point (x,y) of fill | |
occupancy_map: occupancy map generated from Bresenham ray-tracing | |
""" | |
# Fill empty areas with queue method | |
occupancy_map = np.copy(occupancy_map) | |
sx, sy = occupancy_map.shape | |
fringe = deque() | |
fringe.appendleft(center_point) | |
while fringe: | |
n = fringe.pop() | |
nx, ny = n | |
unknown_val = 0.5 | |
# West | |
if nx > 0: | |
if occupancy_map[nx - 1, ny] == unknown_val: | |
occupancy_map[nx - 1, ny] = 0 | |
fringe.appendleft((nx - 1, ny)) | |
# East | |
if nx < sx - 1: | |
if occupancy_map[nx + 1, ny] == unknown_val: | |
occupancy_map[nx + 1, ny] = 0 | |
fringe.appendleft((nx + 1, ny)) | |
# North | |
if ny > 0: | |
if occupancy_map[nx, ny - 1] == unknown_val: | |
occupancy_map[nx, ny - 1] = 0 | |
fringe.appendleft((nx, ny - 1)) | |
# South | |
if ny < sy - 1: | |
if occupancy_map[nx, ny + 1] == unknown_val: | |
occupancy_map[nx, ny + 1] = 0 | |
fringe.appendleft((nx, ny + 1)) | |
return occupancy_map | |
def init_flood_fill(robot_pos, obstacle_points, occ_grid_shape): | |
""" | |
center_point: center point | |
obstacle_points: detected obstacles points (x,y) | |
xy_points: (x,y) point pairs | |
""" | |
center_x, center_y = robot_pos | |
prev_ix, prev_iy = center_x, center_y | |
occupancy_map = (np.ones(occ_grid_shape)) * 0.5 | |
# append first obstacle point to last | |
obstacle_points = np.vstack((obstacle_points, obstacle_points[0])) | |
for (x, y) in zip(obstacle_points[:,0], obstacle_points[:,1]): | |
# x coordinate of the the occupied area | |
ix = int(x) | |
# y coordinate of the the occupied area | |
iy = int(y) | |
free_area = bresenham((prev_ix, prev_iy), (ix, iy)) | |
for fa in free_area: | |
occupancy_map[fa[0]][fa[1]] = 0 # free area 0.0 | |
prev_ix = ix | |
prev_iy = iy | |
return occupancy_map | |
show_animation = False | |
def bresenham(start, end): | |
""" | |
Implementation of Bresenham's line drawing algorithm | |
See en.wikipedia.org/wiki/Bresenham's_line_algorithm | |
Bresenham's Line Algorithm | |
Produces a np.array from start and end (original from roguebasin.com) | |
>>> points1 = bresenham((4, 4), (6, 10)) | |
>>> print(points1) | |
np.array([[4,4], [4,5], [5,6], [5,7], [5,8], [6,9], [6,10]]) | |
""" | |
# setup initial conditions | |
x1, y1 = start | |
x2, y2 = end | |
dx = x2 - x1 | |
dy = y2 - y1 | |
is_steep = abs(dy) > abs(dx) # determine how steep the line is | |
if is_steep: # rotate line | |
x1, y1 = y1, x1 | |
x2, y2 = y2, x2 | |
# swap start and end points if necessary and store swap state | |
swapped = False | |
if x1 > x2: | |
x1, x2 = x2, x1 | |
y1, y2 = y2, y1 | |
swapped = True | |
dx = x2 - x1 # recalculate differentials | |
dy = y2 - y1 # recalculate differentials | |
error = int(dx / 2.0) # calculate error | |
y_step = 1 if y1 < y2 else -1 | |
# iterate over bounding box generating points between start and end | |
y = y1 | |
points = [] | |
for x in range(x1, x2 + 1): | |
coord = [y, x] if is_steep else (x, y) | |
points.append(coord) | |
error -= abs(dy) | |
if error < 0: | |
y += y_step | |
error += dx | |
if swapped: # reverse the list if the coordinates were swapped | |
points.reverse() | |
points = np.array(points) | |
return points | |
def get_free_points_in_front(occupancy_grid, robot_pos, laser_range=10, num_laser=100): | |
""" | |
Assumes circular lidar | |
occupancy_grid: np.array (h x w) | |
robot_pos: (x, y) | |
Outputs: | |
free_points: np.array of hit points (x, y) | |
""" | |
free_points = [] | |
hit_points = [] # actual hit points + last bresenham point (for some reason need this for flodding) | |
actual_hit_points = [] # | |
for orientation in np.linspace(np.pi/2, 3*np.pi/2, num_laser): | |
end_point = (round(robot_pos[0] + laser_range * np.cos(orientation)), round(robot_pos[1] + laser_range * np.sin(orientation))) | |
# Get index along ray to check | |
bresenham_points = (bresenham(robot_pos, end_point)) | |
# Go through the points and see the first hit | |
# TODO: do a check if any first? | |
for i in range(len(bresenham_points)): | |
# if bresenham point is in the map | |
if bresenham_points[i,0] < 0 or bresenham_points[i,0] >= occupancy_grid.shape[0] or bresenham_points[i,1] < 0 or bresenham_points[i,1] >= occupancy_grid.shape[1]: | |
if i != 0: | |
hit_points.append(bresenham_points[i-1]) | |
break # don't use this bresenham point | |
if occupancy_grid[bresenham_points[i,0], bresenham_points[i,1]] == 1: # hit if it is void or occupied #! THINK IF THIS IS A GOOD ASSUMPTION | |
for j in range(min(4, len(bresenham_points) - i - 1)): # add 4 points in front of hit | |
free_points.append(bresenham_points[i+j]) | |
actual_hit_points.append(bresenham_points[i + j + 1]) | |
hit_points.append(bresenham_points[i + j + 1]) | |
break | |
else: # no hits | |
free_point = bresenham_points[i] | |
free_points.append(free_point) | |
if i == len(bresenham_points) - 1: | |
hit_points.append(end_point) # need to add this for proper flooding for vis mask | |
break | |
# Convert to np.array | |
free_points = np.array(free_points) | |
hit_points = np.array(hit_points) | |
actual_hit_points = np.array(actual_hit_points) | |
return free_points, hit_points, actual_hit_points | |
if __name__ == "__main__": | |
# Argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--dataset_folder", type=str, default="/path/to/raycast") | |
parser.add_argument("--class_idx_building", type=int, default=4) | |
parser.add_argument("--num_workers", type=int, default=60) | |
parser.add_argument("--location", type=str, default="los_angeles") | |
args = parser.parse_args() | |
dataset_folder = Path(args.dataset_folder) | |
bev_folder = dataset_folder / args.location / "semantic_masks" | |
output_folder = dataset_folder / args.location / "flood_fill" | |
output_folder.mkdir(exist_ok=True, parents=True) | |
def generate_mask(filepath): | |
mask = np.load(filepath) | |
building_grid = mask[..., args.class_idx_building] | |
try: | |
flooded_image = get_raycast_building_mask(building_grid) | |
except: | |
raise Exception(f"Error in {filepath}") | |
if flooded_image is not None: | |
output_file = output_folder / filepath.name | |
np.save(output_file, flooded_image) | |
else: | |
print("No flood fill generated") | |
bev_files = list(bev_folder.iterdir()) | |
with Pool(args.num_workers) as p: | |
for _ in tqdm(p.imap_unordered(generate_mask, bev_files), total=len(bev_files)): | |
pass | |