MapItAnywhereModel / mapper /utils /generate_raycast_masks.py
hocherie
add files
4187c6f
from multiprocessing import Pool
from tqdm import tqdm
from pathlib import Path
import numpy as np
from collections import deque
import argparse
import cv2
def get_raycast_building_mask(building_grid):
laser_range = 200
num_laser = 100
robot_pos = (building_grid.shape[0] // 2-1, building_grid.shape[1] // 2 - 1)
unoccupied_pos = np.stack(np.where(building_grid != 1), axis=1)
if len(unoccupied_pos) == 0:
return None
l2_dist = unoccupied_pos - [robot_pos[0], robot_pos[1]]
closest = ((l2_dist ** 2).sum(1)**0.5).argmin()
robot_pos = (unoccupied_pos[closest][0], unoccupied_pos[closest][1])
free_points, hit_points, actual_hit_points = get_free_points_in_front(building_grid, robot_pos, laser_range=laser_range, num_laser=num_laser)
free_points[:, 0][free_points[:, 0] >= building_grid.shape[0]] = building_grid.shape[0] - 1
free_points[:, 1][free_points[:, 1] >= building_grid.shape[1]] = building_grid.shape[1] - 1
free_points[:, 0][free_points[:, 0] < 0] = 0
free_points[:, 1][free_points[:, 1] < 0] = 0
hit_points[:, 0][hit_points[:, 0] >= building_grid.shape[0]] = building_grid.shape[0] - 1
hit_points[:, 1][hit_points[:, 1] >= building_grid.shape[1]] = building_grid.shape[1] - 1
hit_points[:, 0][hit_points[:, 0] < 0] = 0
hit_points[:, 1][hit_points[:, 1] < 0] = 0
if len(free_points) > 0:
# Get vis mask by flood filling free space boundary
inited_flood_grid = init_flood_fill(robot_pos, hit_points, building_grid.shape)
inited_flood_grid = (inited_flood_grid * 255).astype(np.uint8).copy()
# pick a seed point from free points, that is not 0 in inited_flood_grid. We want it to be unknown
np.random.shuffle(free_points)
for i in range(len(free_points)):
seed_point = free_points[i]
if inited_flood_grid[seed_point[0], seed_point[1]] != 0:
break # Found a valid seed point, exit the loop
else:
print('Unable to find a valid seed point')
return None
num_filled, flooded_image, mask, bounding_box = cv2.floodFill(inited_flood_grid.copy(), None, seedPoint=(seed_point[1], seed_point[0]), newVal=0)
# name = names[batch_ind][-1]
return flooded_image
else:
print("No free points")
return None
def flood_fill_simple(center_point, occupancy_map):
"""
center_point: starting point (x,y) of fill
occupancy_map: occupancy map generated from Bresenham ray-tracing
"""
# Fill empty areas with queue method
occupancy_map = np.copy(occupancy_map)
sx, sy = occupancy_map.shape
fringe = deque()
fringe.appendleft(center_point)
while fringe:
n = fringe.pop()
nx, ny = n
unknown_val = 0.5
# West
if nx > 0:
if occupancy_map[nx - 1, ny] == unknown_val:
occupancy_map[nx - 1, ny] = 0
fringe.appendleft((nx - 1, ny))
# East
if nx < sx - 1:
if occupancy_map[nx + 1, ny] == unknown_val:
occupancy_map[nx + 1, ny] = 0
fringe.appendleft((nx + 1, ny))
# North
if ny > 0:
if occupancy_map[nx, ny - 1] == unknown_val:
occupancy_map[nx, ny - 1] = 0
fringe.appendleft((nx, ny - 1))
# South
if ny < sy - 1:
if occupancy_map[nx, ny + 1] == unknown_val:
occupancy_map[nx, ny + 1] = 0
fringe.appendleft((nx, ny + 1))
return occupancy_map
def init_flood_fill(robot_pos, obstacle_points, occ_grid_shape):
"""
center_point: center point
obstacle_points: detected obstacles points (x,y)
xy_points: (x,y) point pairs
"""
center_x, center_y = robot_pos
prev_ix, prev_iy = center_x, center_y
occupancy_map = (np.ones(occ_grid_shape)) * 0.5
# append first obstacle point to last
obstacle_points = np.vstack((obstacle_points, obstacle_points[0]))
for (x, y) in zip(obstacle_points[:,0], obstacle_points[:,1]):
# x coordinate of the the occupied area
ix = int(x)
# y coordinate of the the occupied area
iy = int(y)
free_area = bresenham((prev_ix, prev_iy), (ix, iy))
for fa in free_area:
occupancy_map[fa[0]][fa[1]] = 0 # free area 0.0
prev_ix = ix
prev_iy = iy
return occupancy_map
show_animation = False
def bresenham(start, end):
"""
Implementation of Bresenham's line drawing algorithm
See en.wikipedia.org/wiki/Bresenham's_line_algorithm
Bresenham's Line Algorithm
Produces a np.array from start and end (original from roguebasin.com)
>>> points1 = bresenham((4, 4), (6, 10))
>>> print(points1)
np.array([[4,4], [4,5], [5,6], [5,7], [5,8], [6,9], [6,10]])
"""
# setup initial conditions
x1, y1 = start
x2, y2 = end
dx = x2 - x1
dy = y2 - y1
is_steep = abs(dy) > abs(dx) # determine how steep the line is
if is_steep: # rotate line
x1, y1 = y1, x1
x2, y2 = y2, x2
# swap start and end points if necessary and store swap state
swapped = False
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
swapped = True
dx = x2 - x1 # recalculate differentials
dy = y2 - y1 # recalculate differentials
error = int(dx / 2.0) # calculate error
y_step = 1 if y1 < y2 else -1
# iterate over bounding box generating points between start and end
y = y1
points = []
for x in range(x1, x2 + 1):
coord = [y, x] if is_steep else (x, y)
points.append(coord)
error -= abs(dy)
if error < 0:
y += y_step
error += dx
if swapped: # reverse the list if the coordinates were swapped
points.reverse()
points = np.array(points)
return points
def get_free_points_in_front(occupancy_grid, robot_pos, laser_range=10, num_laser=100):
"""
Assumes circular lidar
occupancy_grid: np.array (h x w)
robot_pos: (x, y)
Outputs:
free_points: np.array of hit points (x, y)
"""
free_points = []
hit_points = [] # actual hit points + last bresenham point (for some reason need this for flodding)
actual_hit_points = [] #
for orientation in np.linspace(np.pi/2, 3*np.pi/2, num_laser):
end_point = (round(robot_pos[0] + laser_range * np.cos(orientation)), round(robot_pos[1] + laser_range * np.sin(orientation)))
# Get index along ray to check
bresenham_points = (bresenham(robot_pos, end_point))
# Go through the points and see the first hit
# TODO: do a check if any first?
for i in range(len(bresenham_points)):
# if bresenham point is in the map
if bresenham_points[i,0] < 0 or bresenham_points[i,0] >= occupancy_grid.shape[0] or bresenham_points[i,1] < 0 or bresenham_points[i,1] >= occupancy_grid.shape[1]:
if i != 0:
hit_points.append(bresenham_points[i-1])
break # don't use this bresenham point
if occupancy_grid[bresenham_points[i,0], bresenham_points[i,1]] == 1: # hit if it is void or occupied #! THINK IF THIS IS A GOOD ASSUMPTION
for j in range(min(4, len(bresenham_points) - i - 1)): # add 4 points in front of hit
free_points.append(bresenham_points[i+j])
actual_hit_points.append(bresenham_points[i + j + 1])
hit_points.append(bresenham_points[i + j + 1])
break
else: # no hits
free_point = bresenham_points[i]
free_points.append(free_point)
if i == len(bresenham_points) - 1:
hit_points.append(end_point) # need to add this for proper flooding for vis mask
break
# Convert to np.array
free_points = np.array(free_points)
hit_points = np.array(hit_points)
actual_hit_points = np.array(actual_hit_points)
return free_points, hit_points, actual_hit_points
if __name__ == "__main__":
# Argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_folder", type=str, default="/path/to/raycast")
parser.add_argument("--class_idx_building", type=int, default=4)
parser.add_argument("--num_workers", type=int, default=60)
parser.add_argument("--location", type=str, default="los_angeles")
args = parser.parse_args()
dataset_folder = Path(args.dataset_folder)
bev_folder = dataset_folder / args.location / "semantic_masks"
output_folder = dataset_folder / args.location / "flood_fill"
output_folder.mkdir(exist_ok=True, parents=True)
def generate_mask(filepath):
mask = np.load(filepath)
building_grid = mask[..., args.class_idx_building]
try:
flooded_image = get_raycast_building_mask(building_grid)
except:
raise Exception(f"Error in {filepath}")
if flooded_image is not None:
output_file = output_folder / filepath.name
np.save(output_file, flooded_image)
else:
print("No flood fill generated")
bev_files = list(bev_folder.iterdir())
with Pool(args.num_workers) as p:
for _ in tqdm(p.imap_unordered(generate_mask, bev_files), total=len(bev_files)):
pass