Spaces:
Building
Building
import numpy as np | |
import torch | |
from torchvision.transforms import functional as tfn | |
import torchvision.transforms.functional as tvf | |
from ..utils import decompose_rotmat | |
from ..image import pad_image, rectify_image, resize_image | |
from ...utils.wrappers import Camera | |
from ..schema import KITTIDataConfiguration | |
class BEVTransform: | |
def __init__(self, | |
cfg: KITTIDataConfiguration, augmentations): | |
self.cfg = cfg | |
self.augmentations = augmentations | |
def _compact_labels(msk, cat, iscrowd): | |
ids = np.unique(msk) | |
if 0 not in ids: | |
ids = np.concatenate((np.array([0], dtype=np.int32), ids), axis=0) | |
ids_to_compact = np.zeros((ids.max() + 1,), dtype=np.int32) | |
ids_to_compact[ids] = np.arange(0, ids.size, dtype=np.int32) | |
msk = ids_to_compact[msk] | |
cat = cat[ids] | |
iscrowd = iscrowd[ids] | |
return msk, cat, iscrowd | |
def __call__(self, img, bev_msk=None, bev_plabel=None, fv_msk=None, bev_weights_msk=None, | |
bev_cat=None, bev_iscrowd=None, fv_cat=None, fv_iscrowd=None, | |
fv_intrinsics=None, ego_pose=None): | |
# Wrap in np.array | |
if bev_cat is not None: | |
bev_cat = np.array(bev_cat, dtype=np.int32) | |
if bev_iscrowd is not None: | |
bev_iscrowd = np.array(bev_iscrowd, dtype=np.uint8) | |
if ego_pose is not None: | |
ego_pose = np.array(ego_pose, dtype=np.float32) | |
roll, pitch, yaw = decompose_rotmat(ego_pose[:3, :3]) | |
# Image transformations | |
img = tfn.to_tensor(img) | |
# img = [self._normalize_image(rgb) for rgb in img] | |
fx = fv_intrinsics[0][0] | |
fy = fv_intrinsics[1][1] | |
cx = fv_intrinsics[0][2] | |
cy = fv_intrinsics[1][2] | |
width = img.shape[2] | |
height = img.shape[1] | |
cam = Camera(torch.tensor( | |
[width, height, fx, fy, cx - 0.5, cy - 0.5])).float() | |
if not self.cfg.gravity_align: | |
# Turn off gravity alignment | |
roll = 0.0 | |
pitch = 0.0 | |
img, valid = rectify_image(img, cam, roll, pitch) | |
else: | |
img, valid = rectify_image( | |
img, cam, roll, pitch if self.cfg.rectify_pitch else None | |
) | |
roll = 0.0 | |
if self.cfg.rectify_pitch: | |
pitch = 0.0 | |
if self.cfg.target_focal_length is not None: | |
# Resize to a canonical focal length | |
factor = self.cfg.target_focal_length / cam.f.numpy() | |
size = (np.array(img.shape[-2:][::-1]) * factor).astype(int) | |
img, _, cam, valid = resize_image(img, size, camera=cam, valid=valid) | |
size_out = self.cfg.resize_image | |
if size_out is None: | |
# Round the edges up such that they are multiple of a factor | |
stride = self.cfg.pad_to_multiple | |
size_out = (np.ceil((size / stride)) * stride).astype(int) | |
# Crop or pad such that both edges are of the given size | |
img, valid, cam = pad_image( | |
img, size_out, cam, valid, crop_and_center=False | |
) | |
elif self.cfg.resize_image is not None: | |
img, _, cam, valid = resize_image( | |
img, self.cfg.resize_image, fn=max, camera=cam, valid=valid | |
) | |
if self.cfg.pad_to_square: | |
# Pad such that both edges are of the given size | |
img, valid, cam = pad_image(img, self.cfg.resize_image, cam, valid) | |
# Label transformations, | |
if bev_msk is not None: | |
bev_msk = np.expand_dims( | |
np.array(bev_msk, dtype=np.int32, copy=False), | |
axis=0 | |
) | |
bev_msk, bev_cat, bev_iscrowd = self._compact_labels( | |
bev_msk, bev_cat, bev_iscrowd | |
) | |
bev_msk = torch.from_numpy(bev_msk) | |
bev_cat = torch.from_numpy(bev_cat) | |
rotated_mask = torch.rot90(bev_msk, dims=(1, 2)) | |
cropped_mask = rotated_mask[:, :672, (rotated_mask.size(2) - 672) // 2:-(rotated_mask.size(2) - 672) // 2] | |
bev_msk = cropped_mask.squeeze(0) | |
seg_masks = bev_cat[bev_msk] | |
seg_masks_onehot = seg_masks.clone() | |
seg_masks_onehot[seg_masks_onehot == 255] = 0 | |
seg_masks_onehot = torch.nn.functional.one_hot( | |
seg_masks_onehot.to(torch.int64), | |
num_classes=self.cfg.num_classes | |
) | |
seg_masks_onehot[seg_masks == 255] = 0 | |
seg_masks_onehot = seg_masks_onehot.permute(2, 0, 1) | |
seg_masks_down = tvf.resize(seg_masks_onehot, (100, 100)) | |
seg_masks_down = seg_masks_down.permute(1, 2, 0) | |
if self.cfg.class_mapping is not None: | |
seg_masks_down = seg_masks_down[:, :, self.cfg.class_mapping] | |
img = self.augmentations(img) | |
flood_masks = torch.all(seg_masks_down == 0, dim=2).float() | |
ret = { | |
"image": img, | |
"valid": valid, | |
"camera": cam, | |
"seg_masks": (seg_masks_down).float().contiguous(), | |
"flood_masks": flood_masks, | |
"roll_pitch_yaw": torch.tensor((roll, pitch, yaw)).float(), | |
"confidence_map": flood_masks, | |
} | |
for key, value in ret.items(): | |
if isinstance(value, np.ndarray): | |
ret[key] = torch.from_numpy(value) | |
return ret | |