Spaces:
Building
Building
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
from typing import Callable, Optional, Union, Sequence | |
import numpy as np | |
import torch | |
import torchvision.transforms.functional as tvf | |
import collections | |
from scipy.spatial.transform import Rotation | |
from ..utils.geometry import from_homogeneous, to_homogeneous | |
from ..utils.wrappers import Camera | |
def rectify_image( | |
image: torch.Tensor, | |
cam: Camera, | |
roll: float, | |
pitch: Optional[float] = None, | |
valid: Optional[torch.Tensor] = None, | |
): | |
*_, h, w = image.shape | |
grid = torch.meshgrid( | |
[torch.arange(w, device=image.device), torch.arange(h, device=image.device)], | |
indexing="xy", | |
) | |
grid = torch.stack(grid, -1).to(image.dtype) | |
if pitch is not None: | |
args = ("ZX", (roll, pitch)) | |
else: | |
args = ("Z", roll) | |
R = Rotation.from_euler(*args, degrees=True).as_matrix() | |
R = torch.from_numpy(R).to(image) | |
grid_rect = to_homogeneous(cam.normalize(grid)) @ R.T | |
grid_rect = cam.denormalize(from_homogeneous(grid_rect)) | |
grid_norm = (grid_rect + 0.5) / grid.new_tensor([w, h]) * 2 - 1 | |
rectified = torch.nn.functional.grid_sample( | |
image[None], | |
grid_norm[None], | |
align_corners=False, | |
mode="bilinear", | |
).squeeze(0) | |
if valid is None: | |
valid = torch.all((grid_norm >= -1) & (grid_norm <= 1), -1) | |
else: | |
valid = ( | |
torch.nn.functional.grid_sample( | |
valid[None, None].float(), | |
grid_norm[None], | |
align_corners=False, | |
mode="nearest", | |
)[0, 0] | |
> 0 | |
) | |
return rectified, valid | |
def resize_image( | |
image: torch.Tensor, | |
size: Union[int, Sequence, np.ndarray], | |
fn: Optional[Callable] = None, | |
camera: Optional[Camera] = None, | |
valid: np.ndarray = None, | |
): | |
"""Resize an image to a fixed size, or according to max or min edge.""" | |
*_, h, w = image.shape | |
if fn is not None: | |
assert isinstance(size, int) | |
scale = size / fn(h, w) | |
h_new, w_new = int(round(h * scale)), int(round(w * scale)) | |
scale = (scale, scale) | |
else: | |
if isinstance(size, (collections.abc.Sequence, np.ndarray)): | |
w_new, h_new = size | |
elif isinstance(size, int): | |
w_new = h_new = size | |
else: | |
raise ValueError(f"Incorrect new size: {size}") | |
scale = (w_new / w, h_new / h) | |
if (w, h) != (w_new, h_new): | |
mode = tvf.InterpolationMode.BILINEAR | |
image = tvf.resize(image, (int(h_new), int(w_new)), interpolation=mode, antialias=True) | |
image.clip_(0, 1) | |
if camera is not None: | |
camera = camera.scale(scale) | |
if valid is not None: | |
valid = tvf.resize( | |
valid.unsqueeze(0), | |
(int(h_new), int(w_new)), | |
interpolation=tvf.InterpolationMode.NEAREST, | |
).squeeze(0) | |
ret = [image, scale] | |
if camera is not None: | |
ret.append(camera) | |
if valid is not None: | |
ret.append(valid) | |
return ret | |
def pad_image( | |
image: torch.Tensor, | |
size: Union[int, Sequence, np.ndarray], | |
camera: Optional[Camera] = None, | |
valid: torch.Tensor = None, | |
crop_and_center: bool = False, | |
): | |
if isinstance(size, int): | |
w_new = h_new = size | |
elif isinstance(size, (collections.abc.Sequence, np.ndarray)): | |
w_new, h_new = size | |
else: | |
raise ValueError(f"Incorrect new size: {size}") | |
*c, h, w = image.shape | |
if crop_and_center: | |
diff = np.array([w - w_new, h - h_new]) | |
left, top = left_top = np.round(diff / 2).astype(int) | |
right, bottom = diff - left_top | |
else: | |
assert h <= h_new | |
assert w <= w_new | |
top = bottom = left = right = 0 | |
slice_out = np.s_[..., : min(h, h_new), : min(w, w_new)] | |
slice_in = np.s_[ | |
..., max(top, 0) : h - max(bottom, 0), max(left, 0) : w - max(right, 0) | |
] | |
if (w, h) == (w_new, h_new): | |
out = image | |
else: | |
out = torch.zeros((*c, h_new, w_new), dtype=image.dtype) | |
out[slice_out] = image[slice_in] | |
if camera is not None: | |
camera = camera.crop((max(left, 0), max(top, 0)), (w_new, h_new)) | |
out_valid = torch.zeros((h_new, w_new), dtype=torch.bool) | |
out_valid[slice_out] = True if valid is None else valid[slice_in] | |
if camera is not None: | |
return out, out_valid, camera | |
else: | |
return out, out_valid | |