File size: 5,370 Bytes
4187c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import os
from pathlib import Path

import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib.patches import Patch
import pandas as pd
import numpy as np
import tqdm

from ..bev.get_bev import mask2rgb, PRETTY_COLORS as COLORS, VIS_ORDER
from ..fpv.filters import haversine_np, angle_dist

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset_dir", '-d', type=str, required=True, help="Dataset directory")
    parser.add_argument("--locations", '-l', type=str, default="all",
                        help="Location names in CSV format. Set to 'all' to traverse all locations.")
    parser.add_argument("--rows", type=int, default=5, help="How many samples per PDF page")
    parser.add_argument("--n_samples", type=int, default=30, help="How many samples to visualize?") 
    parser.add_argument("--store_sat", action="store_true", help="Add sattelite column") 
    args = parser.parse_args()

    MAX_ROWS = args.rows
    MAX_COLS = 4 if args.store_sat else 3
    MAX_TEXT_LEN=30
    
    locations = list()
    if args.locations.lower() == "all":
        locations = os.listdir(args.dataset_dir)
        locations = [l for l in locations if os.path.isdir(os.path.join(args.dataset_dir, l))]
    else:
        locations = args.locations.split(",")

    print(f"Parsing {len(locations)} locations..")

    all_locs_stats = dict()

    for location in tqdm.tqdm(locations):
        dataset_dir = Path(args.dataset_dir)
        location_dir = dataset_dir / location
        semantic_mask_dir = location_dir / "semantic_masks"
        sat_dir = location_dir / "sattelite"
        comp_dir = location_dir / "images"

        pq_name = 'image_metadata_filtered_processed.parquet'
        df = pd.read_parquet(location_dir / pq_name)

        # Calc derrivative attributes
        df["loc_descrip"] = haversine_np(
            lon1=df["geometry.long"], lat1=df["geometry.lat"],
            lon2=df["computed_geometry.long"], lat2=df["computed_geometry.lat"]
        )

        df["angle_descrip"] = angle_dist(
            df["compass_angle"],
            df["computed_compass_angle"]
        )

        with PdfPages(location_dir / 'compare.pdf') as pdf:
            # Plot legend page
            plt.figure()
            key2mask_i = dict(zip(COLORS.keys(), range(len(COLORS))))
            patches = [Patch(color=COLORS[key], label=f"{key}") for i,key in enumerate(VIS_ORDER) if COLORS[key] is not None]
            plt.legend(handles=patches, loc='center', title='Legend')
            plt.axis("off")
            plt.tight_layout()
            pdf.savefig()
            plt.close()

            # Plot pairs
            row_cnt = 0
            fig = plt.figure(figsize=(MAX_COLS*2, MAX_ROWS*2))
            for index, row in tqdm.tqdm(df.iterrows()):
                id = row["id"]
                mask_fp = semantic_mask_dir / f"{id}.npz"
                comp_fp = comp_dir / f"{id}_undistorted.jpg"
                sat_fp = sat_dir / f"{id}.png"
                if not os.path.exists(mask_fp) or not os.path.exists(comp_fp) or \
                   (args.store_sat and not os.path.exists(sat_fp)):
                    continue
                plt.subplot(MAX_ROWS, MAX_COLS, (row_cnt % MAX_ROWS)*MAX_COLS + 1)
                plt.axis("off")
                desc = list()

                # Display attributes
                keys = ["geometry.long", "geometry.lat", "compass_angle",
                        "loc_descrip", "angle_descrip",
                        "make", "model", "camera_type", 
                        "quality_score"]
                for k in keys:
                    v = row[k]
                    if isinstance(v, float):
                        v = f"{v:.4f}"
                    bullet = f"{k}: {v}"
                    if len(bullet) > MAX_TEXT_LEN:
                        bullet = bullet[:MAX_TEXT_LEN-2] + ".."
                    desc.append(bullet)
                plt.text(0,0, "\n".join(desc), fontsize=7)
                plt.title(id)
                plt.subplot(MAX_ROWS, MAX_COLS, (row_cnt % MAX_ROWS)*MAX_COLS + 2)

                
                mask = np.load(mask_fp)["arr_0"]
                mask_rgb = mask2rgb(mask)
                plt.imshow(mask_rgb); plt.axis("off")
                plt.title(f"BEV")
                H,W,_ = mask_rgb.shape
                plt.scatter(np.array([H/2]), np.array([W/2]), marker="x")

                plt.subplot(MAX_ROWS, MAX_COLS, (row_cnt % MAX_ROWS)*MAX_COLS + 3)

                plt.imshow(plt.imread(comp_fp)); plt.axis("off")
                plt.title(f"FPV")

                if args.store_sat:
                    sat_fp = sat_dir / f"{id}.png"
                    plt.subplot(MAX_ROWS, MAX_COLS, (row_cnt % MAX_ROWS)*MAX_COLS + 4)
                    plt.imshow(plt.imread(sat_fp)); plt.axis("off")
                    plt.title(f"SAT")
                
                row_cnt += 1
                if row_cnt % MAX_ROWS == 0:
                    #plt.suptitle(location)
                    plt.tight_layout()
                    fig.align_titles()
                    pdf.savefig()
                    plt.close()
                    fig = plt.figure(figsize=(MAX_COLS*2, MAX_ROWS*2))
                
                if row_cnt == args.n_samples:
                    break