File size: 9,524 Bytes
4187c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from multiprocessing import Pool
from tqdm import tqdm
from pathlib import Path
import numpy as np 
from collections import deque
import argparse
import cv2

def get_raycast_building_mask(building_grid):
    laser_range = 200
    num_laser = 100
    robot_pos = (building_grid.shape[0] // 2-1,  building_grid.shape[1] // 2 - 1)
    unoccupied_pos = np.stack(np.where(building_grid != 1), axis=1)

    if len(unoccupied_pos) == 0:
        return None

    l2_dist = unoccupied_pos - [robot_pos[0], robot_pos[1]]
    closest = ((l2_dist ** 2).sum(1)**0.5).argmin()

    robot_pos = (unoccupied_pos[closest][0], unoccupied_pos[closest][1])

    free_points, hit_points, actual_hit_points = get_free_points_in_front(building_grid, robot_pos, laser_range=laser_range, num_laser=num_laser)
    free_points[:, 0][free_points[:, 0] >= building_grid.shape[0]] = building_grid.shape[0] - 1
    free_points[:, 1][free_points[:, 1] >= building_grid.shape[1]] = building_grid.shape[1] - 1
    free_points[:, 0][free_points[:, 0] < 0] = 0
    free_points[:, 1][free_points[:, 1] < 0] = 0

    hit_points[:, 0][hit_points[:, 0] >= building_grid.shape[0]] = building_grid.shape[0] - 1
    hit_points[:, 1][hit_points[:, 1] >= building_grid.shape[1]] = building_grid.shape[1] - 1
    hit_points[:, 0][hit_points[:, 0] < 0] = 0
    hit_points[:, 1][hit_points[:, 1] < 0] = 0

    if len(free_points) > 0:

        # Get vis mask by flood filling free space boundary
        inited_flood_grid = init_flood_fill(robot_pos, hit_points, building_grid.shape)
        inited_flood_grid = (inited_flood_grid * 255).astype(np.uint8).copy()

        # pick a seed point from free points, that is not 0 in inited_flood_grid. We want it to be unknown
        np.random.shuffle(free_points)

        for i in range(len(free_points)):
            seed_point = free_points[i]
            if inited_flood_grid[seed_point[0], seed_point[1]] != 0:
                break  # Found a valid seed point, exit the loop
        else:
            print('Unable to find a valid seed point')
            return None
        
        num_filled, flooded_image, mask, bounding_box = cv2.floodFill(inited_flood_grid.copy(), None, seedPoint=(seed_point[1], seed_point[0]), newVal=0)
        # name = names[batch_ind][-1]
        return flooded_image
    else:
        print("No free points")
        return None

def flood_fill_simple(center_point, occupancy_map):
    """
    center_point: starting point (x,y) of fill
    occupancy_map: occupancy map generated from Bresenham ray-tracing
    """
    # Fill empty areas with queue method
    occupancy_map = np.copy(occupancy_map)
    sx, sy = occupancy_map.shape
    fringe = deque()
    fringe.appendleft(center_point)
    while fringe:
        
        n = fringe.pop()
        nx, ny = n
        unknown_val = 0.5
        # West
        if nx > 0:
            if occupancy_map[nx - 1, ny] == unknown_val:
                occupancy_map[nx - 1, ny] = 0
                fringe.appendleft((nx - 1, ny))
        # East
        if nx < sx - 1:
            if occupancy_map[nx + 1, ny] == unknown_val:
                occupancy_map[nx + 1, ny] = 0
                fringe.appendleft((nx + 1, ny))
        # North
        if ny > 0:
            if occupancy_map[nx, ny - 1] == unknown_val:
                occupancy_map[nx, ny - 1] = 0
                fringe.appendleft((nx, ny - 1))
        # South
        if ny < sy - 1:
            if occupancy_map[nx, ny + 1] == unknown_val:
                occupancy_map[nx, ny + 1] = 0
                fringe.appendleft((nx, ny + 1))
    return occupancy_map

def init_flood_fill(robot_pos, obstacle_points, occ_grid_shape):
    """
    center_point: center point
    obstacle_points: detected obstacles points (x,y)
    xy_points: (x,y) point pairs
    """
    center_x, center_y = robot_pos
    prev_ix, prev_iy = center_x, center_y
    occupancy_map = (np.ones(occ_grid_shape)) * 0.5
    # append first obstacle point to last
    obstacle_points = np.vstack((obstacle_points, obstacle_points[0]))
    for (x, y) in zip(obstacle_points[:,0], obstacle_points[:,1]):
        # x coordinate of the the occupied area
        ix = int(x)
        # y coordinate of the the occupied area
        iy = int(y)
        free_area = bresenham((prev_ix, prev_iy), (ix, iy))
        for fa in free_area:
            occupancy_map[fa[0]][fa[1]] = 0  # free area 0.0
        prev_ix = ix
        prev_iy = iy
    return occupancy_map

show_animation = False

def bresenham(start, end):
    """
    Implementation of Bresenham's line drawing algorithm
    See en.wikipedia.org/wiki/Bresenham's_line_algorithm
    Bresenham's Line Algorithm
    Produces a np.array from start and end (original from roguebasin.com)
    >>> points1 = bresenham((4, 4), (6, 10))
    >>> print(points1)
    np.array([[4,4], [4,5], [5,6], [5,7], [5,8], [6,9], [6,10]])
    """
    # setup initial conditions
    x1, y1 = start
    x2, y2 = end
    dx = x2 - x1
    dy = y2 - y1
    is_steep = abs(dy) > abs(dx)  # determine how steep the line is
    if is_steep:  # rotate line
        x1, y1 = y1, x1
        x2, y2 = y2, x2
    # swap start and end points if necessary and store swap state
    swapped = False
    if x1 > x2:
        x1, x2 = x2, x1
        y1, y2 = y2, y1
        swapped = True
    dx = x2 - x1  # recalculate differentials
    dy = y2 - y1  # recalculate differentials
    error = int(dx / 2.0)  # calculate error
    y_step = 1 if y1 < y2 else -1
    # iterate over bounding box generating points between start and end
    y = y1
    points = []
    for x in range(x1, x2 + 1):
        coord = [y, x] if is_steep else (x, y)
        points.append(coord)
        error -= abs(dy)
        if error < 0:
            y += y_step
            error += dx
    if swapped:  # reverse the list if the coordinates were swapped
        points.reverse()
    points = np.array(points)
    return points

def get_free_points_in_front(occupancy_grid, robot_pos, laser_range=10, num_laser=100):
    """
    Assumes circular lidar
    occupancy_grid: np.array (h x w)
    robot_pos: (x, y)

    Outputs: 
    free_points: np.array of hit points (x, y)
    """

    free_points = []
    hit_points = [] # actual hit points + last bresenham point (for some reason need this for flodding)
    actual_hit_points = [] # 
    for orientation in np.linspace(np.pi/2, 3*np.pi/2, num_laser):
        end_point = (round(robot_pos[0] + laser_range * np.cos(orientation)), round(robot_pos[1] + laser_range * np.sin(orientation)))
        
        # Get index along ray to check
        bresenham_points = (bresenham(robot_pos, end_point))

        # Go through the points and see the first hit
        # TODO: do a check if any first?
        for i in range(len(bresenham_points)):
            # if bresenham point is in the map 
            if bresenham_points[i,0] < 0 or bresenham_points[i,0] >= occupancy_grid.shape[0] or bresenham_points[i,1] < 0 or bresenham_points[i,1] >= occupancy_grid.shape[1]:
                if i != 0:
                    hit_points.append(bresenham_points[i-1])
                break # don't use this bresenham point 
            
            if occupancy_grid[bresenham_points[i,0], bresenham_points[i,1]] == 1: # hit if it is void or occupied #! THINK IF THIS IS A GOOD ASSUMPTION
                
                for j in range(min(4, len(bresenham_points) - i - 1)): # add 4 points in front of hit
                    free_points.append(bresenham_points[i+j])
                
                actual_hit_points.append(bresenham_points[i + j + 1])
                hit_points.append(bresenham_points[i + j + 1])
                
                break
            else: # no hits
                free_point = bresenham_points[i]
                free_points.append(free_point)

                if i == len(bresenham_points) - 1:
                    hit_points.append(end_point) # need to add this for proper flooding for vis mask
                    break
                
    
    # Convert to np.array
    free_points = np.array(free_points)
    hit_points = np.array(hit_points)
    actual_hit_points = np.array(actual_hit_points)
    return free_points, hit_points, actual_hit_points

if __name__ == "__main__":
    # Argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset_folder", type=str, default="/path/to/raycast")
    parser.add_argument("--class_idx_building", type=int, default=4)
    parser.add_argument("--num_workers", type=int, default=60)
    parser.add_argument("--location", type=str, default="los_angeles")

    args = parser.parse_args()

    dataset_folder = Path(args.dataset_folder)
    bev_folder = dataset_folder / args.location / "semantic_masks"
    output_folder = dataset_folder / args.location / "flood_fill"

    output_folder.mkdir(exist_ok=True, parents=True)

    def generate_mask(filepath):
        mask = np.load(filepath)
        building_grid = mask[..., args.class_idx_building]
        try:
            flooded_image = get_raycast_building_mask(building_grid)
        except:
            raise Exception(f"Error in {filepath}")
        
        if flooded_image is not None:
            output_file = output_folder / filepath.name
            np.save(output_file, flooded_image)
        else:
            print("No flood fill generated")

    bev_files = list(bev_folder.iterdir())

    with Pool(args.num_workers) as p:
        for _ in tqdm(p.imap_unordered(generate_mask, bev_files), total=len(bev_files)):
            pass