Spaces:
Running
Running
Commit
·
90226e0
1
Parent(s):
9f70665
init
Browse files- Dockerfile +57 -0
- README.md +5 -4
- __init__.py +0 -0
- main.py +276 -0
Dockerfile
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM ubuntu:20.04
|
2 |
+
|
3 |
+
ARG DEBIAN_FRONTEND=noninteractive
|
4 |
+
|
5 |
+
# Install apt-getable dependencies
|
6 |
+
RUN apt-get update \
|
7 |
+
&& apt-get install -y \
|
8 |
+
build-essential \
|
9 |
+
cmake \
|
10 |
+
git \
|
11 |
+
libeigen3-dev \
|
12 |
+
libopencv-dev \
|
13 |
+
libceres-dev \
|
14 |
+
python3-dev \
|
15 |
+
curl \
|
16 |
+
pkg-config \
|
17 |
+
libcairo2-dev \
|
18 |
+
software-properties-common \
|
19 |
+
&& apt-get clean \
|
20 |
+
&& rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
21 |
+
|
22 |
+
# Mapmachine requirements
|
23 |
+
RUN add-apt-repository ppa:ubuntugis/ppa && \
|
24 |
+
apt-get update && \
|
25 |
+
apt-get -y install libgeos-dev
|
26 |
+
|
27 |
+
RUN add-apt-repository ppa:deadsnakes/ppa && \
|
28 |
+
apt-get update && \
|
29 |
+
apt install -y python3.9-dev && \
|
30 |
+
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
|
31 |
+
python3.9 get-pip.py
|
32 |
+
|
33 |
+
ARG REINSTALL_MAPMACHINE=1
|
34 |
+
RUN pip3.9 install git+https://github.com/tonyzzzzzz/map-machine
|
35 |
+
|
36 |
+
WORKDIR /home/
|
37 |
+
|
38 |
+
# OrienterNet Requirements TODO: Install directly from our requirements once our repo is public
|
39 |
+
|
40 |
+
RUN git clone https://github.com/mapillary/OpenSfM.git && cd OpenSfM && \
|
41 |
+
pip3.9 install -r requirements.txt
|
42 |
+
|
43 |
+
RUN git clone https://github.com/facebookresearch/OrienterNet.git && cd OrienterNet && \
|
44 |
+
pip3 install -r requirements/full.txt
|
45 |
+
|
46 |
+
# MapPerceptionNet extra requirements
|
47 |
+
RUN pip3.9 install geojson shapely geopandas mercantile turfpy vt2geojson folium fastapi\
|
48 |
+
geopy gradio pyarrow cloudpickle==2.0.0 urllib3~=1.25.6 scikit-image filelock hydra-core
|
49 |
+
|
50 |
+
ARG CACHE_RESET=1
|
51 |
+
RUN useradd -m -u 1000 user
|
52 |
+
USER user
|
53 |
+
WORKDIR /app
|
54 |
+
|
55 |
+
RUN git clone https://github.com/MapItAnywhere/MapItAnywhere.git
|
56 |
+
COPY --chown=user . /app
|
57 |
+
CMD ["python3.9", "-m", "main"]
|
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
|
|
8 |
---
|
9 |
|
10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: MIA Data Engine
|
3 |
+
emoji: 🗺️
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
+
app_port: 7860
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__init__.py
ADDED
File without changes
|
main.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import pandas as pd
|
10 |
+
import geopandas as gpd
|
11 |
+
from pyproj.transformer import Transformer
|
12 |
+
|
13 |
+
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
14 |
+
from MapItAnywhere.mia.bev import get_bev
|
15 |
+
from MapItAnywhere.mia.fpv import get_fpv
|
16 |
+
from MapItAnywhere.mia.fpv import filters
|
17 |
+
from MapItAnywhere.mia import logger
|
18 |
+
|
19 |
+
def get_city_boundary(query, fetch_shape=False):
|
20 |
+
# Use Nominatim API to get the boundary of the city
|
21 |
+
base_url = "https://nominatim.openstreetmap.org/search"
|
22 |
+
params = {
|
23 |
+
'q': query,
|
24 |
+
'format': 'json',
|
25 |
+
'limit': 1,
|
26 |
+
'polygon_geojson': 1 if fetch_shape else 0
|
27 |
+
}
|
28 |
+
|
29 |
+
headers = {
|
30 |
+
'User-Agent': f'mapperceptionnet_{query}'
|
31 |
+
}
|
32 |
+
response = requests.get(base_url, params=params, headers=headers)
|
33 |
+
|
34 |
+
if response.status_code != 200:
|
35 |
+
logger.error(f"Nominatim error when fetching boundary data for {query}.\n"
|
36 |
+
f"Status code: {response.status_code}. Content: {response.content}")
|
37 |
+
return None
|
38 |
+
|
39 |
+
data = response.json()
|
40 |
+
|
41 |
+
if data is None:
|
42 |
+
logger.warn(f"No data returned by Nominatim for {query}")
|
43 |
+
return None
|
44 |
+
|
45 |
+
# Extract bbox data from the API response
|
46 |
+
bbox_data = data[0]['boundingbox']
|
47 |
+
bbox = {
|
48 |
+
'west': float(bbox_data[2]),
|
49 |
+
'south': float(bbox_data[0]),
|
50 |
+
'east': float(bbox_data[3]),
|
51 |
+
'north': float(bbox_data[1])
|
52 |
+
}
|
53 |
+
|
54 |
+
if fetch_shape:
|
55 |
+
# Extract GeoJSON boundary data from the API response
|
56 |
+
boundary_geojson = data[0]['geojson']
|
57 |
+
boundary_geojson = {
|
58 |
+
"type": "FeatureCollection",
|
59 |
+
"features": [
|
60 |
+
{"type": "Feature",
|
61 |
+
"properties": {},
|
62 |
+
"geometry": boundary_geojson}]
|
63 |
+
}
|
64 |
+
return bbox, boundary_geojson
|
65 |
+
else:
|
66 |
+
return bbox
|
67 |
+
|
68 |
+
def split_dataframe(df, chunk_size = 100):
|
69 |
+
chunks = list()
|
70 |
+
num_chunks = len(df) // chunk_size + 1
|
71 |
+
for i in range(num_chunks):
|
72 |
+
chunks.append(df[i*chunk_size:(i+1)*chunk_size])
|
73 |
+
return chunks
|
74 |
+
|
75 |
+
async def fetch(location, filter_undistort, disable_cam_filter, map_length, mpp):
|
76 |
+
N=1
|
77 |
+
TOTAL_LOOKED_INTO_LIMIT = 10000
|
78 |
+
|
79 |
+
################ FPV
|
80 |
+
downloader = get_fpv.MapillaryDownloader(os.getenv("MLY_TOKEN"))
|
81 |
+
bbox = get_city_boundary(query=location)
|
82 |
+
tiles = get_fpv.get_tiles_from_boundary(boundary_info=dict(bound_type="auto_bbox", bbox=bbox), zoom=14)
|
83 |
+
np.random.shuffle(tiles)
|
84 |
+
total_looked_into = 0
|
85 |
+
dfs_meta = list()
|
86 |
+
for tile in tiles:
|
87 |
+
image_points_response = await downloader.get_tiles_image_points([tile])
|
88 |
+
if image_points_response is None:
|
89 |
+
continue
|
90 |
+
try:
|
91 |
+
df = get_fpv.parse_image_points_json_data(image_points_response)
|
92 |
+
if len(df) == 0:
|
93 |
+
continue
|
94 |
+
total_looked_into += len(df)
|
95 |
+
df_split = split_dataframe(df, chunk_size=100)
|
96 |
+
|
97 |
+
for df in df_split:
|
98 |
+
image_ids = df["id"]
|
99 |
+
image_infos, num_fail = await get_fpv.fetch_image_infos(image_ids, downloader, infos_dir)
|
100 |
+
df_meta = get_fpv.geojson_feature_list_to_pandas(image_infos.values())
|
101 |
+
|
102 |
+
# Some standardization of the data
|
103 |
+
df_meta["model"] = df_meta["model"].str.lower().str.replace(' ', '').str.replace('_', '')
|
104 |
+
df_meta["make"] = df_meta["make"].str.lower().str.replace(' ', '').str.replace('_', '')
|
105 |
+
|
106 |
+
if filter_undistort:
|
107 |
+
fp = no_cam_filter_pipeline if disable_cam_filter else filter_pipeline
|
108 |
+
df_meta = fp(df_meta)
|
109 |
+
|
110 |
+
dfs_meta.append(df_meta)
|
111 |
+
total_rows = sum([len(x) for x in dfs_meta])
|
112 |
+
if total_rows > N:
|
113 |
+
break
|
114 |
+
elif total_looked_into > TOTAL_LOOKED_INTO_LIMIT:
|
115 |
+
yield (f"Went through {total_looked_into} images and could not find images satisfying the filters."
|
116 |
+
"\nPlease rerun or run the data engine locally for bulk time consuming operations.", None, None)
|
117 |
+
return
|
118 |
+
if total_rows > N:
|
119 |
+
break
|
120 |
+
except:
|
121 |
+
pass
|
122 |
+
|
123 |
+
df_meta = pd.concat(dfs_meta)
|
124 |
+
df_meta = df_meta.sample(N)
|
125 |
+
|
126 |
+
# Calc derrivative attributes
|
127 |
+
df_meta["loc_descrip"] = filters.haversine_np(
|
128 |
+
lon1=df_meta["geometry.long"], lat1=df_meta["geometry.lat"],
|
129 |
+
lon2=df_meta["computed_geometry.long"], lat2=df_meta["computed_geometry.lat"]
|
130 |
+
)
|
131 |
+
|
132 |
+
df_meta["angle_descrip"] = filters.angle_dist(
|
133 |
+
df_meta["compass_angle"],
|
134 |
+
df_meta["computed_compass_angle"]
|
135 |
+
)
|
136 |
+
|
137 |
+
for index, row in df_meta.iterrows():
|
138 |
+
desc = list()
|
139 |
+
# Display attributes
|
140 |
+
keys = ["id", "geometry.long", "geometry.lat", "compass_angle",
|
141 |
+
"loc_descrip", "angle_descrip",
|
142 |
+
"make", "model", "camera_type",
|
143 |
+
"quality_score"]
|
144 |
+
for k in keys:
|
145 |
+
v = row[k]
|
146 |
+
if isinstance(v, float):
|
147 |
+
v = f"{v:.4f}"
|
148 |
+
bullet = f"{k}: {v}"
|
149 |
+
desc.append(bullet)
|
150 |
+
metadata_fmt = "\n".join(desc)
|
151 |
+
|
152 |
+
yield metadata_fmt, None, None
|
153 |
+
image_urls = list(df_meta.set_index("id")["thumb_2048_url"].items())
|
154 |
+
num_fail = await get_fpv.fetch_images_pixels(image_urls, downloader, raw_image_dir)
|
155 |
+
if num_fail > 0:
|
156 |
+
logger.error(f"Failed to download {num_fail} images.")
|
157 |
+
|
158 |
+
seq_to_image_ids = df_meta.groupby('sequence')['id'].agg(list).to_dict()
|
159 |
+
lon_center = (bbox['east'] + bbox['west']) / 2
|
160 |
+
lat_center = (bbox['north'] + bbox['south']) / 2
|
161 |
+
projection = get_fpv.Projection(lat_center, lon_center, max_extent=200e3)
|
162 |
+
|
163 |
+
df_meta.index = df_meta["id"]
|
164 |
+
image_infos = df_meta.to_dict(orient="index")
|
165 |
+
process_sequence_args = get_fpv.default_cfg
|
166 |
+
|
167 |
+
if filter_undistort:
|
168 |
+
for seq_id, seq_image_ids in seq_to_image_ids.items():
|
169 |
+
try:
|
170 |
+
d, pi = get_fpv.process_sequence(
|
171 |
+
seq_image_ids,
|
172 |
+
image_infos,
|
173 |
+
projection,
|
174 |
+
process_sequence_args,
|
175 |
+
raw_image_dir,
|
176 |
+
out_image_dir,
|
177 |
+
)
|
178 |
+
if d is None or pi is None:
|
179 |
+
raise Exception("process_sequence returned None")
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Failed to process sequence {seq_id} skipping it. Error: {repr(e)}.")
|
182 |
+
|
183 |
+
fpv = plt.imread(out_image_dir/ f"{row['id']}_undistorted.jpg")
|
184 |
+
else:
|
185 |
+
fpv = plt.imread(raw_image_dir/ f"{row['id']}.jpg")
|
186 |
+
yield metadata_fmt, fpv, None
|
187 |
+
################ BEV
|
188 |
+
df = df_meta
|
189 |
+
# convert pandas dataframe to geopandas dataframe
|
190 |
+
gdf = gpd.GeoDataFrame(df,
|
191 |
+
geometry=gpd.points_from_xy(
|
192 |
+
df['computed_geometry.long'],
|
193 |
+
df['computed_geometry.lat']),
|
194 |
+
crs=4326)
|
195 |
+
|
196 |
+
# convert the geopandas dataframe to UTM
|
197 |
+
utm_crs = gdf.estimate_utm_crs()
|
198 |
+
gdf_utm = gdf.to_crs(utm_crs)
|
199 |
+
transformer = Transformer.from_crs(utm_crs, 4326)
|
200 |
+
# load OSM data, if available
|
201 |
+
padding = 50
|
202 |
+
# calculate the required distance from the center to the edge of the image
|
203 |
+
# so that the image will not be out of bounds when we rotate it
|
204 |
+
map_length = map_length
|
205 |
+
map_length = np.ceil(np.sqrt(map_length**2 + map_length**2))
|
206 |
+
distance = map_length * mpp
|
207 |
+
|
208 |
+
# create bounding boxes for each point
|
209 |
+
gdf_utm['bounding_box_utm_p1'] = gdf_utm.apply(lambda row: (
|
210 |
+
row.geometry.x - distance - padding,
|
211 |
+
row.geometry.y - distance - padding,
|
212 |
+
), axis=1)
|
213 |
+
|
214 |
+
gdf_utm['bounding_box_utm_p2'] = gdf_utm.apply(lambda row: (
|
215 |
+
row.geometry.x + distance + padding,
|
216 |
+
row.geometry.y + distance + padding,
|
217 |
+
), axis=1)
|
218 |
+
|
219 |
+
# convert the bounding box back to lat, long
|
220 |
+
gdf_utm['bounding_box_lat_long_p1'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p1']), axis=1)
|
221 |
+
gdf_utm['bounding_box_lat_long_p2'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p2']), axis=1)
|
222 |
+
gdf_utm['bbox_min_lat'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[0])
|
223 |
+
gdf_utm['bbox_min_long'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[1])
|
224 |
+
gdf_utm['bbox_max_lat'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[0])
|
225 |
+
gdf_utm['bbox_max_long'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[1])
|
226 |
+
gdf_utm['bbox_formatted'] = gdf_utm.apply(lambda row: f"{row['bbox_min_long']},{row['bbox_min_lat']},{row['bbox_max_long']},{row['bbox_max_lat']}", axis=1)
|
227 |
+
|
228 |
+
# iterate over the dataframe and get BEV images
|
229 |
+
jobs = gdf_utm[['id', 'bbox_formatted', 'computed_compass_angle']] # only need the id and bbox_formatted columns for the jobs
|
230 |
+
jobs = jobs.to_dict(orient='records').copy()
|
231 |
+
|
232 |
+
get_bev.get_bev_from_bbox_worker_init(osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir,
|
233 |
+
"MapItAnywhere/mia/bev/styles/mia.yml", map_length, mpp,
|
234 |
+
None, True, False, True, True, 1)
|
235 |
+
for job_dict in jobs:
|
236 |
+
get_bev.get_bev_from_bbox_worker(job_dict)
|
237 |
+
|
238 |
+
bev = plt.imread(rendered_mask_dir / f"{row['id']}.png")
|
239 |
+
|
240 |
+
yield metadata_fmt, fpv, bev
|
241 |
+
|
242 |
+
filter_pipeline = filters.FilterPipeline.load_from_yaml("MapItAnywhere/mia/fpv/filter_pipelines/mia.yaml")
|
243 |
+
filter_pipeline.verbose=False
|
244 |
+
no_cam_filter_pipeline = filters.FilterPipeline.load_from_yaml("MapItAnywhere/mia/fpv/filter_pipelines/mia_rural.yaml")
|
245 |
+
no_cam_filter_pipeline.verbose=False
|
246 |
+
|
247 |
+
loc = Path(".")
|
248 |
+
infos_dir =loc / "infos_dir"
|
249 |
+
raw_image_dir = loc / "raw_images"
|
250 |
+
out_image_dir = loc / "images"
|
251 |
+
osm_cache_dir = loc / "osm_cache"
|
252 |
+
bev_dir = loc / "bev_raw"
|
253 |
+
semantic_mask_dir = loc / "semantic_masks"
|
254 |
+
rendered_mask_dir = loc / "rendered_semantic_masks"
|
255 |
+
|
256 |
+
all_dirs = [loc, osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir, out_image_dir, raw_image_dir]
|
257 |
+
for d in all_dirs:
|
258 |
+
os.makedirs(d, exist_ok=True)
|
259 |
+
|
260 |
+
logger.info(f"Current working directory: {os.getcwd()}, listdir: {os.listdir('.')}")
|
261 |
+
|
262 |
+
demo = gr.Interface(
|
263 |
+
fn=fetch,
|
264 |
+
inputs=[gr.Text("Pittsburgh, PA, United States", label="Location"),
|
265 |
+
gr.Checkbox(value=False, label="Filter & Undistort"),
|
266 |
+
gr.Checkbox(value=False, label="Disable camera model filtering"),
|
267 |
+
gr.Slider(minimum=64, maximum=512, step=1, label="BEV Dimension", value=224),
|
268 |
+
gr.Slider(minimum=0.1, maximum=2, label="Meters Per Pixel", value=0.5)],
|
269 |
+
outputs=[gr.Text(label="METADATA"), gr.Image(label="FPV"), gr.Image(label="BEV")],
|
270 |
+
title="MapItAnywhere (Data Engine)",
|
271 |
+
description="A demo showcasing samples of MIA's capability to retrieve FPV-BEV pairs worldwide."
|
272 |
+
"For bulk download/heavy filtering please visit the github and follow the instructions to run locally"
|
273 |
+
)
|
274 |
+
|
275 |
+
logger.info("Starting server")
|
276 |
+
demo.launch(server_name="0.0.0.0", server_port=7860,share=False)
|